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Application of the geomorphological 
instantaneous unit hydrograph theory to 
development of forecasting models in Poland* 

JANUSZ ZELAZ1NSKI 
c/o Institute of Meteorology and Water 
Management, ul Podlesna 61, 01673 Warsaw, 
Poland 

ABSTRACT Geomorphological instantaneous unit hydrograph 
(GIUH) theory has been applied for the estimation of the 
parameters of two conceptual models: a linear cascade 
model and a Laurenson-type model, Conceptual models, 
especially the linear cascade model, are more convenient 
for operational forecasting than the original GIUH model. 
A single linear reservoir model is suggested, with 
limited storage to represent the subsurface flow component. 
Subsurface flow is significant in Polish mountainous 
river catchments. Preliminary results of applying the 
model to operational flood forecasting are described, 

L'application de la théorie de 1'hydrogramme instantané 
unitaire gêomorphologique pour la mise au point des 
modèles de prévision en Pologne 
RESUME On a appliqué la théorie 1'hydrogramme instan­
tané unitaire (GIUH) pour l'estimation des paramètres des 
deux modèles conceptuels : le modèle des cascades 
linéaires des réservoirs et le modèle de Laurenson. Les 
modèles conceptuels (surtout le modèle des cascades des 
réservoirs linéaires) sont meilleurs pour les prévisions 
opérationnelles que les modèles originaux (GIUH). On a 
proposé un réservoir limité unitaire linéaire comme 
modèle du débit hypodermique. Le débit hypodermique est 
d'une importance capitale dans les bassins des rivières 
montagneuses en Pologne. On a décrit les résultats 
préliminaires de l'application de GIUH aux prévisions 
opérationelles des crues. 

THE MODEL CONCEPT 

The development of a coupled forecasting-decision model for flood 
protection and reservoir operation for the Upper Vistula basin 
system is now an important activity on which the Cracow Branch of 
the Institute of Meteorology and Water Management is engaged. The 
operational forecasting model, a component of the system, should 
satisfy the following conditions: 

(a) Fast execution time and small operational memory (only a 

•Paper presented at the Anglo-Polish Workshop held at Jab/onna, 
Poland, September 1984, (See report in Hydrological Sciences 
Journal, vol, 30, no.1, p.165). 
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small minicomputer is available at the operational centre; 
(b) Possibility of estimating model parameters from sparse 

observation data. The marked spatial variability of the input 
data implies the whole basin must be subdivided into many sub-basins 
which can be treated as lumped parameter systems. For these sub-
basins adequate hydrological data do not exist. 

The theory of the geomorphological instantaneous unit hydrograph 
(GIUH) developed by Rodriguez-Iturbe & Valdes (1979) and Rodriguez-
Iturbe et al. (1979) seems a good tool for this task. However, for 
operational real-time forecasting the original GIUH theory had to be 
modified, as follows. 

The original GIUH formulation is inconvenient for the updating 
procedure necessary in an operational model. At each forecasting 
time step, an initial state of the model must be updated. For this 
reason, a linear* cascade model seems more convenient for the updating 
procedure because: 

(a) it has a small number of state variables; 
(b) the linear state space formulation of the model permits the 

application of an adaptive Kalman algorithm for updating. 
GIUH theory has been applied to the estimation of the linear 

cascade parameters. Assuming that the gamma distribution probability 
density function describes the IUH, the formulae for tp (time to peak) 
and qp (peak discharge) derived in the GIUH method can be applied 
for the estimation of two gamma distribution parameters; in turn, 
the latter may serve for the estimation of the parameters of an 
equivalent linear cascade. 

As a first step, we can calculate the 3 parameter in the gamma 
distribution (the number of degrees of freedom) as the solution of 
the equation: 

o ^B 
(3 - 1)^ exp(l - 3) = 0.58(^)°-55 . R^ 0 5 (1) 

where R^, Rg and Rj, are the standard Horton ratios. The right-hand 
side of equation (1) is a hydrological similarity coefficient, IR, 
introduced by Rodriguez-Iturbe et al. (1979). The number, N, of 
linear cascade reservoirs is rounded to an integer number using the 
parameter, 3, calculated by equation (1). This round-up generates 
some deviation of the IUH peak with respect to the original GIUH 
theory. However, this deviation, as many simulations have shown, is 
generated by the rainfall excess estimation or by missing input 
data. 

The time of storage, K (equal for each reservoir in the cascade), 
is calculated from: 

1.58 L H"-55 H:0'55 RT-°-
36 

B A 1* 
K = (2) 

where 
K is time of storage (s); 
L is length of the main stream in the basin (m); and 
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vmax i s flow velocity (m3s-1) corresponding to the peak discharge, 
Qmax (m 3s _ 1). 

For the estimation of velocity in equation (2), some relation 
between V m a x and Q m a x is needed. The formula used herein is: 

( a Q n for Q é QB 
! max max , „,. 

V = { (3) 
max J n „ __ 

a QB for Q > QB 
i max 

where 
Q a x is peak discharge in the stream cross section of the outfall of 
the basin (m 3s _ 1); 
a, n are parameters derived from a set of discharge measurements or 
from regional formulae; 
QB is bankful discharge. 

The velocity, V m a x, can be calculated in the following way. Our 
estimate must satisfy simultaneously two equations, viz. equation 
(3), and: 

Q = cj>(V ) (4) 
max max 

Equation (4) describes the relationship between V m a x and Q m a x 

only for a given event. We can evaluate a set of values which satisfy 
equation (4) only by numerical simulation for given net rainfall 
events, assuming a set of different values for V m a x. The problem 
is to find among an infinite number of pairs of values that pair 
which satisfies equation (3). 

To solve this problem the following algorithm is suggested. 
First, a lower bound for v is defined as: 

V = Q n (5) 
max^ o 

where Q 0 < QB is a maximum value of the baseflow (in the simulation 
model) or the initial discharge (in the operational forecasting 
model). 

VmaXT obtained in this way is substituted in equation (2) which 
gives a first estimate of the K parameter of a linear cascade. 
Next, the net rainfall-runoff simulation is performed, resulting in 
the next QmaxL

 a n d vmaxL estimates. 
In other words, the first simulation is obtained with the minimum 

possible value of V m a x, and this gives the minimum possible value of 
the peak discharge, QmaxL' ^ I f Qmaxt, ̂  QB> the final estimation of 
V m a x is given by equation (6).) 

A second simulation is performed via: 

V = a QBn (6) 
max,, 

for the maximum possible value of V m a x and this gives the maximum 
possible peak discharge, Q m a X u-
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A first estimate of V m a x is obtained as the point of intersection 
of the straight line: 

In V = lna + n In Q (7) 
max max 

and the straight line defined by two points with coordinates, 
In Q m a x i, In Q m a x i, resulting from simulations as described above. 
If this estimate satisfies equation (3) with a specified 
tolerance, i.e. ±0.01, computations are completed. If not, the 
procedure is repeated. In the next iteration, the first estimate 
of V m a x is assumed as the new lower or upper bound. Usually two 
iterations are sufficient. 

GIUH theory has also been applied to the estimation of parameters 
of a model of the Laurenson type (Laurenson, 1964), A stream of a 
specified order is represented by a single, nonlinear reservoir. 
The reservoirs are connected in the same order as the streams in the 
basin under study. A storage equation for an i-th order stream is: 

S. = k Q n i (8) 
i l 

where Sj_ is storage; Qj_ is outflow; and k^ and n± are parameters. 
Departing from the basic assumptions of GIUH theory, the 

following formulae for the parameters in equation (8) can be derived: 

L. 
k = _J: (9) 
i a. 

i 

n = 1 - m <10) 
i i 

Here Lj is the average length of an i-th order stream, and a±, m± are 
parameters of an equation: 

v = a Q.mi (ID 
i i l 

where Vj_ is a mean flow velocity. This model, in addition to taking 
advantage of the linear cascade,enables us to reproduce the spatial 
distribution of an input over the streams in a basin, and to account 
for variable flow velocities in the streams of a given order. 

The last modification introduced in the original GIUH theory is 
the introduction of an interflow (subsurface flow) component. In 
Poland, most of the runoff of moderate floods occurs in the form of 
interflow. This flow component is much faster than groundwater 
flow. However, the residence time of water flowing in the soil 
mantle cannot be neglected, A retardation mechanism for the soil 
mantle is represented by a single linear reservoir with limited 
storage : 



s = 
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KSQ if KSQ <; S 
max 

(12) 
S if KSQ > S 
max max 

Here KS and S m a x are respectively the time of storage and maximal 
storage capacity of the soil mantle in which an interflow occurs. 
As one effect of the model described, surface flow (with zero 
residence time in a soil) occurs only in the cases when the rainfall 
intensity is greater than -Smax/KS, i.e. the maximum subsurface 
flow rate. Moderate storms generate only subsurface flow, which is 
in agreement with observations. 

In the stochastic framework assumed by Rodriguez-Iturbe et al. 
(1979), the constrained linear reservoir which describes a soil 
retardation mechanism can be interpreted as follows. The residence 
time of a drop of effective rain in a soil has a discrete/continuous 
distribution. The discrete part of the distribution is connected 
with zero residence time and modelling surface flow. The continuous 
part of the distribution (for subsurface flow) is exponentially 
distributed. 

Probably relationships exist between KS and S m a x and some 
parameters which can be evaluated from topographic and geological 
maps. S m a x is proportional to soil depth and porosity. KS is a 
function of the path length of a raindrop within the soil mantle and 
of the flow velocity. Average length can be deduced from the river 
network density. Velocity is a function of hill slope and flow 
resistance generated by soil and depending on soil structure. 
Attempts are being made to establish adequate relationships. 

CONCLUDING REMARKS 

Operational forecasting models of the rainfall-runoff class based on 
the concept discussed are at present being tested. The models are 
to be implemented for the Carpathian River catchments of the Upper 

2 

Vistula basin, with the catchment areas ranging from 300 to 5000 km . 
So far, the results are encouraging. Between the two models 

discussed the linear model seems preferable because of faster 
computation and easier updating. Although a nonlinear model 
accounts for the space variability of the input, the same results 
may be obtained by dividing the catchment into subcatchments 
represented by linear, lumped parameter systems. In this case 
computer execution time is much shorter. It should be stressed that 
an acceptable agreement between simulated and observed hydrographs 
has been obtained only after introduction of the interflow component. 
Two parameters of the interflow storage model can be easily 
estimated based on two or three observed rainstorm hydrographs. 
The interflow parameters do not vary much in space. 

For these reasons the model discussed can be calibrated for 
catchments with few runoff observations. The only condition in such 
cases is to have at one's disposal a topographic map of a scale 
enabling an estimation of the geomorphological parameters to be made 
and to make a regional study beforehand. 

This conclusion has been proven for the Upper Dunajec catchment 
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where the regional formulae for estimation of the parameters a± and 
mi in equation (11) had been established and little space variation 
of the parameters KS and Smax in equation (12) had been noted. For 
this study the hydrometric data from 14 river gauges were used. In 
other words, the parameters of the model discussed appear to be well 
suited for a generalization and a space extrapolation. 

It seems that in this way, a good solution of important practical 
problems has been obtained, namely the spatial decomposition of a 
big catchment into subcatchments of uniform rainfall and flood 
formation conditions. 
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Fig. 1 The flow hydrograph of the Skawa River for the flood event during 19-27 
July 1980. The 48~h flow forecasts computed by the linear cascade model parameters 
which are estimated using the GIUH theory. Forecast precipitation is assumed to be 
the same as the observed values. 
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It should be noted that a model described as linear is really 
linear only for a given event (or given forecast). For several 
events the model is, of course, nonlinear because the time constant, 
K, is a function of flow velocity, V m a x, which in turn depends on 
peak discharge, Qmax-

An important role in the models described arises from an 
evaluation of the rainfall excess. In our case the rainfall excess 
can be defined as that part of total rain which generates fast forms 
of outflow i.e. surface and subsurface flow. In our study, many 
models of rainfall excess separation were tested, starting from very 
simple two-parameter relationships similar to Horton's formula up to 
a sophisticated 12-parameter conceptual model. Each model gave 
similar results from the point of view of errors. 

The parameters of each model vary in time (from event to event 
and in the sequence of time steps of the calculations). Finally, 
we have chosen simple models convenient for updating procedures. In 
the operational version of their forecasting models the modified SCS 
formulae (US Dept of the Interior, 1965) is being used. 

An example of the model performance on the data of the Skawa 
River, a tributary of the Upper Vistula, is shown in Fig.l. The 
catchment area is 835 km". The forecasts are repeated every 24 h 
and the forecast lead time is 48 h. The parameters of the linear 
cascade and subsurface flow models were relatively stable from 
storm to storm. However, the parameter S in the SCS formulae used 
for the rainfall excess determination is variable in time. In the 
operational version of the forecasting model, an updating procedure 
for the S parameter has been introduced by fitting the latest 
simulation to observed data. It was assumed that S depends on API 
and a regression relationship was established and introduced into 
the model. 

For the identification of the model parameters only Horton's 
geomorphological ratios derived from the topographic map and the 
set of results of discharge measurements at the outfall cross 
section of the basin are used. The KS and S m a x parameters for the 
Skawa are assumed to be equal to those identified for the neigh­
bouring Dunajec River basin. It seems that the model parameters 
obtained in such a way are better if physically based than those 
estimated through optimization. 
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