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The paper presents an evaluation of real time ensemble forecasts produced during 2010–2012 by the
demonstration project INFORM (Integrated Forecast and Reservoir Management) in Northern California.
In addition, the innovative elements of the forecast component of the INFORM project are highlighted.
The forecast component is designed to dynamically downscale operational multi-lead ensemble forecasts
from the Global Ensemble Forecast System (GEFS) and the Climate Forecast system (CFS) of the National
Centers of Environmental Prediction (NCEP), and to use adaptations of the operational hydrologic models
of the US National Weather Service California Nevada River Forecast Center to provide ensemble reservoir
inflow forecasts in real time. A full-physics 10-km resolution (10 km on the side) mesoscale model was
implemented for the ensemble prediction of surface precipitation and temperature over the domain of
Northern California with lead times out to 16 days with 6-hourly temporal resolution. An intermediate
complexity regional model with a 10 km resolution was implemented to downscale the NCEP CFS ensem-
ble forecasts for lead times out to 41.5 days. Methodologies for precipitation and temperature model
forecast adjustment to comply with the corresponding observations were formulated and tested as
regards their effectiveness for improving the ensemble predictions of these two variables and also for
improving reservoir inflow forecasts. The evaluation is done using the real time databases of INFORM
and concerns the snow accumulation and melt seasons. Performance is measured by metrics that range
from those that use forecast means to those that use the entire forecast ensemble.

The results show very good skill in forecasting precipitation and temperature over the subcatchments
of the INFORM domain out to a week in advance for all basins, models and seasons. For temperature, in
some cases, non-negligible skill has been obtained out to four weeks for the melt season. Reservoir inflow
forecasts exhibit also good skill for the shorter lead-times out to a week or so, and provide a good quan-
titative basis in support of reservoir management decisions pertaining to objectives with a short term
horizon (e.g., flood control and energy production). For the northernmost basin of Trinity reservoir inflow
forecasts exhibit good skill for lead times longer than 3 weeks in the snow melt season. Bias correction of
the ensemble precipitation and temperature forecasts with fixed bias factors over the range of lead times
improves forecast performance for almost all leads for precipitation and temperature and for the shorter
lead times for reservoir inflow. The results constitute a first look at the performance of operational cou-
pled hydrometeorological ensemble forecasts in support of reservoir management.

� 2014 Elsevier B.V. All rights reserved.
1. Introduction

The Integrated Forecast and Reservoir Management (INFORM)
demonstration project was conceived to demonstrate increased
water-use efficiency in Northern California water resources opera-
tions through the innovative application of climate, hydrologic and
decision science (Georgakakos et al., 2005, 2000; Carpenter and
Georgakakos, 2001; Yao and Georgakakos, 2001). The particular
objectives of INFORM are to (a) implement an integrated fore-
cast-management system for the primary Northern California res-
ervoirs, both for individual reservoirs as well as system-wide; (b)
demonstrate the utility of climate, weather and hydrologic fore-
casts through near-real-time tests of the integrated system with
actual data; and (c) align the forecast component of INFORM to
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existing operational models and practices in the region to facilitate
an eventual smooth transition to operations.

The Northern California river and reservoir system serves many
vital water uses, including providing two-thirds of the state’s
drinking water, irrigating 7 million acres of the world’s most pro-
ductive farmland, and being home to hundreds of species of fish,
birds, and plants. In addition, the system protects Sacramento
and other major cities from flood disasters and contributes
significantly to the production of hydroelectric energy. The
Sacramento-San Joaquin Delta provides a unique environment
and is California’s most important fishery habitat. Water from
the Delta is pumped and transported through canals and aqueducts
south and west serving the water needs of many more urban,
agricultural, and industrial users.

Fig. 1 shows the drainage basins of the region of interest in
Northern California delineated by the U.S. National Weather
Service (NWS) California Nevada River Forecast Center (CNRFC). The
drainage basins are on the American, Yuba, Feather, Sacramento,
and Trinity Rivers and their tributaries. The Folsom, Oroville,
Shasta, New Bullards Bar and Englebright reservoirs on the
Sacramento River tributaries are included in the INFORM system,
together with the Trinity Reservoir (Clair Engle Lake) on the Trinity
River. Forecasting of the precipitation and temperature in these
drainage basins and of the resulting inflow into these reservoirs
are part of the INFORM demonstration project activities.

INFORM meteorological-component forecast models use as
input the operational ensemble forecasts of the National Centers
for Environmental Prediction (NCEP) of the National Oceanic and
Atmospheric Administration (NOAA). The INFORM models down-
scale these forecasts for the watersheds of the region of interest
in real time to produce high resolution ensemble precipitation
and surface air temperature forecasts and ensemble forecasts of
reservoir inflows. The innovative aspects of the formulation aim to
provide the ability to generate continuous dynamically-downscaled
Fig. 1. Northern California hydrologic basins for the INFORM demonstration project. Wa
by thin black lines and main rivers by blue lines. The major reservoir locations and names
the reader is referred to the web version of this article.)
forecasts with high temporal and spatial resolution with lead times
from 6 to 41.5 days.

In the present paper we summarize the formulations and
procedures associated with the real-time ensemble predictions of
basin-scale precipitation and temperature as well as of the ensuing
reservoir inflows, and focus on the evaluation of their performance
using observed data from the available real time databases. This
evaluation of performance intends to illuminate the real time
behavior of the forecast system that includes changes in the NCEP
operational model output during the period of evaluation and a
few missing forecasts due to real time connectivity problems.
However, it is this type of evaluation that is useful for real time res-
ervoir management as these are recurring problems with real time
forecast systems.

Forecast lead times of interest in this work are from 6 h to
41.5 days and are pertinent to reservoir operations management.
INFORM also produces longer lead-time forecasts (once a month
out to 9 months with daily resolution) pertinent to reservoir oper-
ations planning but these are not evaluated herein (see relevant
evaluations in Carpenter and Georgakakos (2001), and Yao and
Georgakakos (2001), as well as in HRC-GWRI (2007, 2013)).

More complete descriptions of the activities, formulations, main
findings and recommendations of INFORM are presented in HRC-
GWRI (2007, 2013). Recent application of the INFORM formula-
tions in climate change studies is in Georgakakos et al. (2012b,a).
The present work complements the literature of operational fore-
cast system evaluation that pertains to coupled hydrometeorolog-
ical models, high resolution gridded ensemble precipitation and
temperature forecasts in mountainous terrain with seasonal snow,
and ensemble reservoir inflow forecasts used for improved multi-
objective reservoir management worldwide (e.g., Collischonn
et al., 2007; Olsson and Lindstrom, 2008; Vannitsem, 2008;
McCollor and Stull, 2008; Renner et al., 2009; Cloke and
Pappenberger, 2009; Janowiak et al., 2010; Achleitner et al.,
tersheds draining into reservoirs are indicated by heavy black lines, subcatchments
are also indicated. (For interpretation of the references to color in this figure legend,
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2012; Boucher et al., 2012). The present paper contributes new
information regarding the maximum lead times of reliable fore-
casts as it examines forecast lead times from the same operational
forecast system in the range 1–41.5 days, in a series of medium to
large reservoir drainage areas (from �2000 km2 to �20,000 km2)
that span a 3-degree latitude range and an elevation range of more
than 2500 m. The unique contribution of the present work rests on
the novel approach followed to dynamically downscale operational
large scale ensemble forecasts across the forecast horizons from
6 h to 41.5 days. The methodology is transferrable to other areas
of mountainous terrain and seasonal snow.
Fig. 2. Conceptual design of the INFORM RTFS for evaluation. CNRFC MAP and MAT
refers to observational data used in deriving forecast bias adjustments.
2. Real-time forecast system

The conceptual design of the INFORM real-time forecast system
(RTFS) is tailored to use operationally available data and has the
following key characteristics:

(a) Ensemble forecasts of mean areal precipitation and temper-
ature as well as reservoir inflow are based on dynamical
downscaling methods.

(b) Hydrologic components (snow and soil water models, and
runoff and flow routing models) used are adaptations of
the operational hydrologic forecast models of the NWS Cal-
ifornia Nevada River Forecast Center (CNRFC).

(c) Updated estimates of snow and soil water content states
from CNRFC are assimilated once a day to align the hydro-
logic forecast system estimates to CNRFC operational fore-
cast system estimates.

The first characteristic specifies dynamic downscaling methods
as opposed to statistical downscaling methods to allow the preser-
vation of the synoptic coherence of regional precipitation and tem-
perature changes as weather systems develop and pass over the
region of interest. Such coherence is important to allow good
reproduction of the short term co-variability of precipitation and
temperature that determines reservoir inflow variability, espe-
cially in an environment with significant seasonal snow cover.
The second characteristic is imposed by the operational nature of
the demonstration project and is a prerequisite for operational
utilization of the forecast products by the collaborating forecast
and management agencies in Northern California. Similarly, the
last characteristic allows the incorporation of corrections based
on data and forecaster experience and assures compatibility with
operational procedures.

Fig. 2 shows a schematic representation of the RTFS compo-
nents and interactions.

There are two main sources of real-time, ensemble, large-scale
forecast information for the INFORM RTFS, both originating at
NOAA NCEP. The first is the Global Ensemble Forecast System
(GEFS) (e.g., Hamill et al., 2011, 2013) and the second is the Climate
Forecast System (CFS) (Saha et al., 2006, 2014). The first is used for
0–16 day forecasts with a spatial resolution of approximately
100 km, and the second is used for forecasts up to 41.5 days with
a spatial resolution of approximately 100 km (version 2, see dis-
cussion below). There were two versions of CFS output used as
described below. We discuss next each of the RTFS pathways that
emanate from these sources (see Fig. 2).

The mesoscale Weather Research and Forecasting (WRF) model
was used to dynamically downscale the 0–16 day 20-member
ensemble predictions from the GEFS operational system on a
10 � 10 km2 spatial and a 6-hourly temporal scale (see following
section for more details on implementation). However, test simu-
lations revealed that running WRF with CFS ensemble input
beyond this forecast lead time (i.e., 16 days) is impractical. In
addition, use of WRF for longer lead times assures divergence of
the WRF land-surface component states (i.e., soil water estimates)
from those of the operational hydrologic models used by the
CNRFC because of different model structure and physics (e.g., the
former uses energy fluxes to estimate the potential rates of
evapotranspiration, while the latter uses climatological estimates
based on observed data), which also prevents direct assimilation
of operational hydrologic model states into WRF.

Thus, WRF is used for the short-term forecasts (0–16 days) that
support short-range objectives (e.g., flood control, hydroelectric
power concerns) at the reservoir sites. A computationally-efficient
intermediate complexity regional model (ICRM) is utilized to
provide dynamic downscaling for the CFS forecasts of three dimen-
sional (3-D) atmospheric variables to produce surface precipitation
and temperature fields out to 41.5 days maximum lead time. In
earlier studies, the ICRM forced by the 3-D (profile) ensemble fore-
casts from the CFS predicted the occurrence of heavy rainfall for
lead times greater than 16 days out to 30 days under strong synop-
tic forcing situations in Northern California (Georgakakos et al.,
2010a,b). A description of the ICRM implementation is given in a
subsequent section. In this section the links to the other models
are highlighted.

The ICRM uses a land surface component with snowpack and
soil water modeling that are gridded adaptations of the analogous
basin-based operational hydrologic models run at CNRFC. This
allows assimilation of operational model states that include any
forecaster updates/adjustments once per day to align the initial
conditions of the INFORM ICRM integrations with those of the
operational CNRFC hydrologic models.

Two different CFS forecast output streams, CFSv1 (or CFS1) and
then CFSv2 (or CFS2), became available from NCEP during the eval-
uation period. In the latter and most recent case, CFS2 provides 16
ensemble members per day (4 members for each of 4 initializa-
tions at 00Z, 06Z, 12Z and 18Z) and with the maximum lead time
of 41.5 days for INFORM. It is noted that at present the available
3-D information in the CFS1 and CFS2 forecasts is not appropriate
for running ICRM directly, so there is a transform module devel-
oped to convert the existing 3-D information (indicated as 3D� in
Fig. 2) to ICRM-compatible 3-D information (indicated as 3Da in
Fig. 2).
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The WRF and ICRM runs generate 10 � 10 km2 gridded surface
precipitation and temperature ensemble forecasts for Northern
California for the period 0–16 days (GFS 3-D based) and 0–
41.5 days (CFS 3-Da based), respectively. To use these as input to
the basin-based hydrologic model of INFORM, requires converting
gridded information to mean areal precipitation (MAP) and tem-
perature (MAT) for each of the CNRFC-delineated sub-catchments
of interest. This is accomplished by using the available Geographic
Information System (GIS) and the model output grid specification
(see the box with label ‘‘Grid to Basin Avg.’’ in Fig. 2). This conver-
sion facilitates the production of MAP and MAT ensemble forecasts
for each of the sub-catchments of the CNRFC/INFORM hydrologic
forecast system.

Adjustment of the ensemble MAP and MAT forecasts to comply
with the distributional characteristics of the corresponding obser-
vations obtained from CNRFC was also made for improved input to
the hydrologic models and it is indicated in Fig. 2 (described in a
later section). Both the unadjusted and the adjusted MAP and
MAT real-time ensemble forecasts and resultant ensemble reser-
voir inflow forecasts are evaluated in this work.

The INFORM hydrologic model is basin-based and uses tailored
river routing schemes for all the rivers of interest. It runs both with
the WRF and the ICRM ensemble forecast output mentioned above
to produce reservoir inflow ensembles for all the reservoir sites of
interest with 6-hourly temporal resolution and with forecast lead
times that span the range from 6 h to 41.5 days. The decision to
make the hydrologic model basin-based derives from the require-
ment to align and preserve of the operational CNRFC hydrologic
catchment configuration in INFORM, and the requirement for
INFORM to maintain use of operational components to the extent
possible. In addition, the operational hydrologic forecast models
have very good performance in simulations and predictions (e.g.,
Shamir et al., 2006) and there is no compelling reason to diverge
from them in the INFORM system for the scales of interest.

Because of the use of different input and models for obtaining
the MAP and MAT forcing, it is expected that the error structure
of the ensemble reservoir inflow predictions from WRF and ICRM
will differ substantially (this is confirmed in the performance
assessments described in the following sections). In addition, it is
necessary to merge the WRF-based ensemble reservoir inflow pre-
dictions (out to 16 days) with those of the ICRM-based ensemble
predictions (out to 41.5 days) and generate the same number of
ensemble members throughout the period from 0 to 41.5 days lead
time. To achieve this in real time, it is necessary to align the statis-
tical character of the ensemble predictions from these two opera-
tional streams shown in Fig. 2. HRC-GWRI (2013) presents the
methodology used in INFORM for this. Because in this work we
focus on the evaluation and intercomparison of the predictions,
we evaluate each forecast stream of Fig. 2 independently. Note that
the predictions of reservoir inflows are for unimpaired flows (not
including upstream regulation effects), also called full natural
flows (FNFs), and such forecasts are evaluated using estimates of
FNF based on observed reservoir data such as levels and outflows
using water balance analysis for the reservoir.

It is desirable to use the snowpack and soil content states of the
hydrologic model component to update the land-surface compo-
nent of the ICRM (grid based). This was achieved through a feed-
back from the hydrologic model to the ICRM. This adjustment is
made with a lag of �6 h. Note that ICRM runs on a 6-h cycle so
the assimilation with a 6-h lag is feasible.

2.1. WRF model implementation

The INFORM RTFS system utilizes version 3.2.1 of the Advanced
Research WRF (ARW) dynamical core. The WRF-ARW (called WRF
herein) is a state of the art mesoscale model designed for both
research and operational applications and is based on the MM5
mesoscale model (Dudhia, 1993). The equation set used by the
model is fully compressible, Euler non-hydrostatic with a terrain
following, hydrostatic pressure vertical coordinate. A detailed
description of the WRF-ARW can be found in Skamarock et al.
(2008).

The application of a mesoscale model to an area of interest is
typically made by configuring a system of nested grids, the design
of which is strongly influenced by the data available for definition
of the model’s initial and boundary conditions. The GEFS system
includes a control forecast and 20 perturbed forecasts that are
run out to 16 days on a T190L28 horizontal and vertical resolution.
Each of the 20 GEFS ensemble perturbation forecasts is used to
drive a separate instance of WRF, with each of these ensemble per-
turbations being centered and orthogonal at the initial time.
Because the resolution of the GEFS (1� � 1� as supplied by the
NCEP) is much coarser than the 10 � 10�km2 resolution of the
INFORM WRF, the initial conditions used for each of the WRF runs
are supplied by the analysis time of NCEP’s North American Model
(NAM). These analyses are on a Lambert conformal grid (resolution
of approximately 12 km in the horizontal) and are generated by
combining model output, i.e. the GFS control run, and observations
from various sources (NCEP BUFR data).

The WRF was configured with two nested Lambert conformal
grids (Fig. 3) with horizontal resolutions of 30 km and 10 km and
corresponding mesh sizes of 30 � 30 and 52 � 55 grid points,
respectively (the latter labeled ‘‘d02’’ in Fig. 3). A two-way interac-
tive communication occurs between the nested grids. Each grid
contains 30 computational atmospheric layers with the finest ver-
tical resolution in the lowest 2 km; the highest computational
layer is at approximately 50 hPa (�20 km above sea level) and
the lowest layer is approximately 28 m above ground level. Com-
putational time steps of 180 and 60�s are used on the outer and
innermost grids, respectively. Surface topography, land use and
soil type for the WRF are taken from the United States Geological
Survey (USGS) terrestrial data with a spatial resolution of 30�s
(approximately 1 km). General terrestrial input files at a resolution
of 1� supply the albedo, greenness fraction, slope category, and
deep soil temperature. Parameterizations selected for use within
WRF include the Kain–Fritsch convective parameterization (Kain,
2004) and the NOAH land surface model (Livneh et al., 2010) along
with the WRF Single-Moment 6-class microphysical scheme (e.g.,
Hong and Lim, 2006).

2.2. ICRM implementation

As mentioned earlier ICRM is an intermediate complexity cou-
pled atmospheric and land surface model used to downscale the
NCEP CFS ensemble forecasts for the INFORM system. Over the
course of INFORM, NCEP made available two versions of the CFS
three-dimensional output. Initially, CFS1 offered a minimal set of
upper air variables with four ensemble members produced once
daily. Later with CFS2, a more complete set of upper air variables
was made available with four ensemble members produced four
times a day. To maintain real time forecast capability, the INFORM
RTFS was enhanced to work first with CFS1 and then with CFS2.
The change-over from CFS1 data to CFS2 data for the RTFS was
on the 21st of February 2012.

As noted, CFS1 provided a very limited set of upper-air forecast
data (few variables, few levels). In contrast, the orographic precip-
itation model used in the ICRM atmospheric component requires a
complete vertical profile of meteorological conditions [tempera-
ture (T), humidity (Q), winds (U), and heights (Z)] on pressure lev-
els from near the surface to �200 hPa at representative locations
upstream (to the west) of the Sierra Nevada. For instance, Oakland,
California is well situated for this purpose, and previous work has



Fig. 3. The computational grids used in the WRF-ARW simulations. The coarse outermost nest takes up the entire map with the boundaries of the inner nest indicated by the
white rectangle (labeled ‘‘d02’’).

Table 2
Surface and upper air variables required for upstream sites for INFORM ICRM. (‘‘X’’
indicates variables available or easily estimated from CFS1 output; ‘‘D’’ indicates
variables that must be statistically derived.)

Pressure (hPa) Z T Q U V

1000 X D D X X
850 X D D X X
700 X D D X X
500 X D D X X
400 X D D D D
200 X D D X X
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shown that the use of actual radiosonde soundings from this loca-
tion to provide boundary conditions gives good results with ICRM
(HRC-GWRI, 2007). In contrast to these requirements, CFS1 pro-
vides only (a) heights on the 1000, 850, 700, 500 and 200 hPa pres-
sure surfaces, (b) winds at 850 hPa, and (c) integrated column
water content (PWAT). Winds on the 700, 500, and 200 hPa pressure
surfaces can be derived using the assumption of geostrophy (e.g.,
Wallace and Hobbs, 2006). Thus, the required variables available
or immediately derivable from CFS1 are as shown in Table 1; those
required by the INFORM RTFS system are as shown in Table 2.

The basic problem is to develop a statistical model that can pro-
duce estimates of the required unknown quantities in Table 2
(those marked ‘‘D’’) when supplied with a single set of the variables
in Table 1 (those that are available from CFS1). The necessary mod-
els were developed using a technique commonly known as Princi-
ple Component (‘‘PC’’) regression (e.g., Jolliffe, 2002). In PC
regression, the predictor and predictand data (in this case, the data
available from CFS1 and the data required for the ICRM model,
respectively) are expressed in terms of linear combinations (deter-
mined by regressions) of orthogonal basis functions known as
‘‘Empirical Orthogonal Functions’’ (EOFs). These paired functions
express different modes of variability in ‘‘variable space’’ (e.g.,
the 16 predictor or 14 predictand variables; these are known as
‘‘loadings’’) and ‘‘time’’ (e.g., the number of observations; these
are the ‘‘PCs’’). For PC regression, the EOF analysis serves to smooth
the predictor and predictands, and improves the stability of the
regression parameters.
Table 1
Surface and upper air variables available from CFS1 at each grid point. (‘‘X’’ indicates a
CFS1 output variable; ‘‘G’’ indicates that the winds are derived using geostrophy.)

Pressure (hPa) Z U V PWAT

1000 X G G
850 X X X
700 X G G
500 X G G
200 X G G
Full column X
The CFS2 ensemble forecast output is substantially more exten-
sive than that from CFS1 (Table 3). In this case, generation of ICRM
input for each time and ensemble member requires hypsometric
estimation for T and Z to 925 and 250 mbar levels from the neigh-
boring higher and lower levels, for which the values exist. Esti-
mates of specific humidity for the 1000, 250 and 200 hPa levels
were obtained by setting the first equal to the 925 hPa value and
the latter two to zero.

The atmospheric component of the ICRM is an orographic pre-
cipitation model whose formulation is described in HRC-GWRI
(2007) and in Georgakakos et al. (2012b). The 10 � 10 km2 surface
grid of the ICRM is shown in Fig. 4 together with the two upstream
CFS upper air input sites near Oakland and Eureka, California.

The 3-D ensemble forecasts of CFS and the resultant ICRM pre-
cipitation output have a 12-h resolution. To generate 6-hourly out-
put for the downstream hydrologic models, a uniform temporal
distribution of the 12-hourly totals to 6-hourly increments
was used based on analysis of the distribution of mean areal
Table 3
Upper air and surface variable availability for CFS2 output. (Numerical values are in
hPa.)

T 1000 850 700 500 250 200
q 2 m 925 850 700 500
u&v 10 m 1000 925 850 700 500 250 200
Z 1000 850 700 500 200



Fig. 4. Surface grid of the ICRM for Northern California. The two vertical profiles at Eureka and Oakland provide CFS three-dimensional ensemble forecast input.
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precipitation during the day for the watersheds of interest
(HRC-GWRI, 2013).

Downscaling of the CFS ensemble forecasts through the use of
ICRM is accomplished as follows: first, the orographic model com-
ponent of the ICRM is executed with a basic computational interval
of 112 s to provide ensemble gridded precipitation estimates at a
10 km horizontal resolution, a 1000 m vertical resolution in mid-
troposphere, and a 6-h temporal resolution out to 41.5 days. This
component uses CFS ensemble input from two grid points that pro-
vide free-stream upstream moist inflow to the ICRM (coastal CFS
nodes at Eureka and Oakland in Fig. 4) Next, MAP estimates are
obtained for each INFORM subcatchment by area weighting of
the gridded model precipitation output within each subcatchment.
The MAP estimates are then used to drive the basin hydrologic and
routing models described earlier, and to provide cloud cover input
for the surface air temperature component of ICRM (see descrip-
tion below).

It is important to note that the orographic model component is
a simplified dynamical model that generates precipitation
estimates due to the interaction of the moist-wind field and the
orographic terrain. The model forecasts are thus suitable for
the mountainous terrain of Northern California, where most of
the reservoir inflow is generated, while little precipitation is
produced in the valley regions. Earlier evaluation (see HRC-
GWRI, 2007) showed good performance in estimating the occur-
rence and amounts of MAP, with some overestimation in higher
elevations and the previously noted underestimation in lower
elevations.

The ICRM also incorporates a land-surface model used for the
estimation of gridded surface air temperature. This formulation is
based on surface energy balance considerations for the estimation
of the surface (skin) temperature at each grid box (Fig. 4). The sur-
face temperature To is computed as the solution of the diagnostic
surface energy balance equation, which, for generality that
includes melting snow, may be written as (e.g., Pielke, 1984;
Liston, 1995):
ð1� aÞQ si þ Q li þ Q lo þ Q H þ Q E þ Q G ¼ Qm ð1Þ
where Qsi is solar radiation reaching the surface, Qli is incoming
longwave radiation, Qlo is outgoing longwave radiation, QH is sensi-
ble turbulent heat flux, QE is latent turbulent heat flux, QG is
conductive energy transport (assumed negligible), Qm is energy
available for melt, and a is surface albedo. The parameterizations
of the different heat fluxes as functions of the reference and surface
temperatures, reference relative humidity, pressure and wind
speed, the presence of precipitating and non-precipitating clouds,
the surface soil water saturation level, the presence or absence of
snow, and the land surface parameters such as land use type, sur-
face albedo, emissivity and aerodynamic roughness, are discussed
in Georgakakos et al. (2012b) and in HRC-GWRI (2013) and are
not detailed here. The second to fifth terms of the left-hand side
of Eq. (1) (from Qli through QE) are functions of surface temperature
To and thus, given parameterizations of the other terms, To may be
obtained as the algebraic solution of the aforementioned equation.
Appendix A provides the solution method for To and the 2-m air
temperature, Ta, needed for the snow component model.

To obtain estimates of snow cover and soil water saturation
levels at the ground surface and to assure consistency with
operational hydrologic forecast models (that will use the surface
temperature forcing from the ICRM), gridded versions of the
operational snow and soil water models were used with parameter
values estimated as described in HRC-GWRI (2013, Appendix B).
For real time operation, the relative fraction of water content is
estimated over a basin by the basin hydrologic models of the
INFORM RTFS and this fraction is distributed over the ICRM grids
within the basin to provide initial values for the soil model of ICRM
in the feedback process shown in Fig. 2. The snow fraction and
snow water equivalent are similarly distributed prior to each ICRM
integration.
2.2.1. Cloud influence
The orographic precipitation model provides information per-

taining to the development of orographic precipitating clouds.
These computed precipitating clouds constitute a minimal cloud
condition. However, clouds exist at other times when precipitation



Table 4
Statistical indices comparing the daily simulations and observed FNF.

Reservoir Correlation coefficient Fractional bias

Folsom 0.92 0.24
Oroville 0.89 0.53
Shasta 0.92 �0.01
Trinity 0.77 0.44
New Bullards Bar 0.81 0.15
Englebright 0.87 0.21
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is not occurring. Due to the profound influence that clouds have on
surface temperature it is important to account for their develop-
ment. An important aspect of the computations is the establish-
ment of conditions for the development of clouds through parcel
ascent over the mountain barriers in Northern California. Sensitiv-
ity studies and available literature indicates that conditions for
parcel ascent are that at the 850 mbar level (above the climatolog-
ical snowline and boundary layer depth) the air is near saturation
(relative humidity of 90% or higher), the wind speed is greater than
5 m/s, and the wind is from a westerly direction (this to assure that
the moist air will be advected over the mountain barrier rather
than be blocked); in addition, and based on Pandey et al. (1999),
clouds may only develop when and where the 700 mbar tempera-
ture is colder than 6 �C.

Several sensitivity analyses were performed (see HRC-GWRI
(2013) for details) using CNRFC mean areal temperature (MAT)
data and various conditions for cloud development: minimal cloud
condition involving only precipitating clouds, a maximal cloud
condition involving unconditional parcel ascent, and a conditional
cloud condition involving cloud ascent with the constraints
described earlier. The results indicate that the conditional cloud
development approach gives best results for the subcatchments
with elevations above the mean snow line, while for the lower ele-
vations the max cloud approach offers comparable (and even bet-
ter results in some cases). The decision to use the conditional cloud
approach is based on the fact that the ICRM temperature is most
significant for predicting snow pack development and melting
and it is the snow pack at higher elevations (e.g., higher than an
average snow line of 1,500 m) that is most important for down-
stream flow predictions.

2.3. INFORM RTFS hydrologic models

The hydrologic models of INFORM RTFS closely follow the oper-
ational hydrologic forecast models used by the California Nevada
River Forecast Center (CNRFC). The snow and soil water models
are adapted (e.g., Anderson, 1973; Georgakakos, 1986; Shamir
et al., 2006) from the Community Hydrologic Prediction System
(CHPS), formerly the National Weather Service River Forecast Sys-
tem (NWSRFS), and the hydrologic segments within INFORM are
based on CNRFC-defined watershed areas for operational forecast-
ing. Thus the hydrologic model components are basin-based and
are updated in terms of their sub-basin definitions and parameters
to align as previously noted with current CNRFC operations for the
five major INFORM reservoir watersheds.

Inputs to the hydrologic model components are the basin MAP
and MAT forecasted by the WRF and the ICRM as described earlier.
The snow and soil water model components produce estimates of
snow depth, snow melt and runoff during the cold season, along
with surface and subsurface runoff for each watershed sub-basin
throughout the year. This output is input to a channel kinematic
routing component (Georgakakos and Bras, 1982), tailored for each
major reservoir watershed, to produce streamflow estimates at
each sub-watershed and an estimate of total reservoir inflow in
each case.

Model parameters for the snow and soil models are derived
from the CNRFC operational hydrologic model parameters, which
are based on CNRFC calibration of natural flows into the reservoirs.
Parameters of the kinematic routing component for each reservoir
watershed were estimated using historical streamflow data and
the CNRFC-estimated unit hydrograph at the hydrologic segments.
The mathematical basis of the hydrologic models of INFORM has
been given in HRC-GWRI (2007, Chapter 4) and will not be
repeated here.

The simulation performance of the hydrologic models using
operational model parameter estimates was compared to
unimpaired or ‘‘Full Natural Flow’’ (FNF) estimates obtained from
the California Data Exchange Center (CDEC) (see HRC-GWRI
(2013) for details). The records used were at least ten years long.
Table 4 summarizes the daily simulation performance by reservoir
inflow. The overall correlation is lowest for Trinity Reservoir
inflows (0.77) and is highest (0.92) for both Folsom and Shasta
Reservoir inflows. These high correlation values indicate good
agreement between the variability of the simulations and the
FNF observations. The bias statistics indicate an over-estimation
of the observed flows by approximately 15–50%. In this context,
fractional bias is defined as the residual mean over the observa-
tions mean.

Fig. 5 presents the comparison of the cumulative distribution of
daily flow for the observations (FNF, in black) and simulations (in
red) for each of the reservoirs. For all reservoirs, good reproduction
of the observed daily flow distribution is found. The largest dis-
crepancies are observed for Trinity and Oroville reservoirs; both
showing an over-estimation of the observations over a range from
mid- to high-flows. It is noted that estimation errors in MAP and
MAT from sparse point observations contribute to the flow simula-
tion errors of mountainous watersheds.

Additional qualitative comparisons of the simulated snow
water equivalent (SWE) with available snow sensors were made
to assess the performance of the snow model simulations for the
period from January 2011 to January 2013. Although direct com-
parison is not meaningful (point data vs. areal average values),
the results indicate that the patterns of accumulation and ablation
shown in the snow sensor records are captured by the simulations;
especially for the accumulation regions of the upper elevations in
the watersheds (see HRC-GWRI (2013) for several examples).

2.4. MAP and MAT bias adjustment

Persistent errors arise in the forecasts of MAP and MAT as a
result of imperfect models (WRF and ICRM) and imperfect large
scale forcing (GEFS and CFS). Adjustment of the MAP and MAT
ensemble forecasts to correct for bias was done for each subcatch-
ment, model (e.g., WRF or ICRM) and each season (excluding the
dry summer season): November through February (NDJF) and
March through May (MAM). As will be discussed in the next
section, in most cases biases in MAP and MAT vary little with lead
time. This consistency allows focus on a particular lead time for the
estimation of the bias factor, which can then be applied to all lead
times. A probabilistic approach was taken to account for the
ensemble uncertainty and for the distribution of model forecast
errors. The methodology is shown schematically in Fig. 6 that is
created with synthetic data for illustration purposes.

Consider the cumulative frequency plot of the forecast ensem-
ble daily mean areal precipitation produced by a given model for
a given season and subcatchment, and for a particular lead time
(shown is the forecast with lead time of 72 h). The cumulative fre-
quency plot may be divided into deciles (each decile then contains
the same number of ensemble forecasts). The mean forecast
(denoted by Mean(F)) may then be estimated for each decile. Cor-
responding to the forecasts of each decile there are observations of
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mean areal precipitation estimated by CNRFC using station obser-
vations. These observations, relevant to a particular forecast decile,
span a range and form their own cumulative distribution function
as depicted schematically in the inset of Fig. 6 (the better the
model forecasts the narrower the range of observations near the
forecast decile). Selecting a statistic of the distribution of observa-
tions (in the schematic we selected the 70th percentile value P0.7 as
an example), one may define the bias factor for each decile as the
ratio: P0.7/Mean(F). Multiplication of the model values in the decile
with the computed factor then provides for adjustment of the
model ensemble forecasts to reduce their bias with respect to
observations. As a result of a small scale sensitivity study in the
present implementation of INFORM, the numerator for the compu-
tation of the bias factor is P0.3 for the deciles that are less than the
cumulative frequency of 0.3, and P0.7 for the deciles greater than
0.7. The deciles between 0.3 and 0.7 use the mean in the numerator
of the bias factor.

The procedure used is designed to reduce systematic bias in the
forecast data while retaining the estimated forecast uncertainty in
the system forecasts. Retaining forecast uncertainty reliability is
expected to be very important for effective reservoir management
(e.g., Georgakakos and Graham, 2008).
3. Evaluation of real-time forecasts

This section presents a selection of verification results compar-
ing INFORM RTFS atmospheric and hydrological model forecasts
with observations. The results shown here cover the drainage
basins of the Folsom, New Bullards Bar/Englebright, Oroville,
Shasta, and Trinity reservoirs (Fig. 1). For the atmospheric model
forecasts we compare forecast and observed MAP and MAT, with
the latter derived by NOAA/NWS CNRFC from in situ measure-
ments. For the hydrologic models, the forecast inflows are com-
pared to full-natural-flow (FNF) estimates of the inflows to the
primary reservoirs in each watershed. The next section provides
a brief outline of how the observational and forecast data were
processed and a description of the statistical measures used for
performance assessment. The assessments themselves, for MAP,
MAT and INFLOW, follow in separate sections. Evaluation is done
first for the unadjusted MAP and MAT forecasts and then for the
adjusted MAP and MAT forecasts. It is emphasized that the focus
is on the evaluation of the actual real time forecasts from the
INFORM RTFS that are of interest for true operational real time res-
ervoir management rather than distilled subsets that would be
appropriate for evaluating individual models and model compo-
nents. Examples of the latter subsets are in Hamill et al. (2013)
for the GEFS and in Saha et al. (2013) for the CFSv2.
3.1. Data processing

3.1.1. MAP and MAT data
Observation-based estimates of MAP (mm 6 h�1) and MAT (�C)

were obtained from CNRFC for each of the sub-basins within the
main watersheds. These data have 6-h temporal resolution and



Fig. 6. Schematic for bias factor estimation using a probabilistic approach. The cumulative frequency of the mean areal precipitation forecasts is based on ensemble forecasts
with a fixed lead time of 72 h. The inset shows the distributions of observations that fall within a single tercile of the forecast distribution.

Table 5
Time periods covered by observational data and forecast system output.

Data source Coverage

Observations (MAP and MAT) 06/15/2009–11/04/2012
Observations (INFLOW) 01/01/2010–01/08/2013
ICRM-CFS1 11/26/2010–10/23/2012
WRF 11/07/2011–11/02/2012
ICRM-CFS2 02/21/2012–11/12/2012
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cover 00Z on 15 June 2009 through 00Z on 4 November 2012. The
data were processed to provide 24-h averages (MAT) and accumu-
lations (MAP) for each 24-h period in the record ending at 00Z or
12Z (the validation time). The observed data times were converted
from PST to UTC for the validation. The MAP and MAT comparisons
discussed focus on the time periods ending at 00Z (4:00 PM PST),
with some discussion of 12Z results as appropriate, as the results
do not change much for the different validation times.

Forecast MAP and MAT were available from ensemble simula-
tions with the three atmospheric modeling systems described ear-
lier, designated ICRM-CFS1, WRF, and ICRM-CFS2. These data were
available for the constituent sub-basins for times described below.
Each forecast system produces output for each 6-h increment
through a given forecast run.

To help clarify the following discussion, the ICRM-CFS1 system
provided one four member ensemble forecast per day (initialized
at 00Z) going out to a lead time of 41.5 days (996 h) and operated
until October 2012 when the CFS1 ceased operation. The limitation
of just four ensemble members per day precludes the use of daily
probabilistic statistics with ICRM-CFS1.

The ICRM-CFS2 system produces a four-member ensemble four
times per day (at 00Z, 06Z, 12Z and 18Z) using boundary conditions
from the NOAA CFS2 climate forecast system. These forecasts also
run out to a lead time of 996 h. This system began running on 21
February 2012 and the final forecast used here was produced on
12 November 2012.

The WRF system is driven by NOAA NCEP GEFS output and pro-
duces two 20-member ensemble forecasts per day (initialized at
00Z and 12Z), these running out to a lead time of 384 h (16 days).
This system produced forecast data from 7 November 2011
through 2 November 2012.

The output from each forecast system contains gaps when some
or all of the ensemble members failed to complete (our analyses
required all ensemble members to be present), nevertheless the
sample sizes are sufficient to provide statistical guidance concern-
ing performance. Table 5 summarizes the time period covered by
observational and forecast system data.
3.1.2. INFLOW data
The INFLOW observational data was provided as the average

FNF discharge rate (in cubic feet per second, cfs) for the 24-h
period ending at approximately 12Z each day (this contrasts with
the 6-hourly observational data for MAT and MAP). The forecast
INFLOW data was in the same form described above for MAT and
MAP giving inflow for each 6-h lead time increment.
3.1.3. Forecast averaging
For most of the results described here, the forecast data for WRF

and ICRM-CFS2 were processed to provide 24-h averages from
multiple lead times for comparison with the observed 24-h aver-
ages (verifying averaging blocks ended at 12Z for INFLOW data;
averaging blocks for MAP and MAT ended at 00Z for the results
shown in the following). The use of observed and forecast averages
in the processing scheme is exemplified in the diagram of Fig. 7.
Forecast initialization time and observation times are shown along
the left side, and forecast lead times are shown along the top. The
open and filled circles in shaded blue boxes (lower left) indicate
the period of time going into one observed 24-h average (average
of 4 6-hourly values for MAT and INFLOW; accumulation from 4
6-hourly averages for MAP), with ‘‘validation time’’ indicated by
the filled circle (at 12Z on 6 March in this case). The line segments
of the filled triangles indicate the ‘‘blocks’’ over which the forecast
averages of different lead times were calculated to correspond to
the observed 24-h period described earlier (blue shaded region in



Fig. 7. Diagram showing the ‘‘24-h Block Average’’ verification scheme. (The
symbols are explained in the main text.)

2 For interpretation of color in Fig. 7, the reader is referred to the web version o
this article.
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lower left). Here, the lowest line of filled triangles in yellow shaded
boxes marks the most recent set of forecasts validating at 12Z on 6
March and these belong to the ‘‘00-h lead’’ forecast using the nota-
tion in the text. Other line segments with filled triangles signify
forecasts with earlier initializations, all validating at 12 Z on 6
March. Solid triangles in yellow shaded boxes signify forecasts
initiated at 12Z. The WRF forecast system has initialization times
every 12 h; yellow shading and no-shading indicates forecast
blocks with initial times used for that system. The ICRM-CFS2 sys-
tem was initialized every 6 h and uses all the line segments shown
with solid triangles. 24-h flow FNF ‘‘observations’’ are only avail-
able at �12Z, so validation statistics are for 12Z only. WRF fore-
casts went out to 384 h lead time, so the last block having the
full complement of forecasts has a nominal lead time of 336 h
(14 days). ICRM-CFS2 forecasts ran out to 996 h (41.5 days) but
were processed to provide statistics out to a nominal lead time
of 720 h (30 days). Note that each forecast is composed of individ-
ual ensemble members that are not indicated in Fig. 7. The yellow
shaded line segments show the averaging scheme used for the
ICRM-CFS1 MAP and MAT forecast output initialized once per day.

The basic idea is to form ‘‘daily-ensembles’’ from all of the fore-
casts that (a) are valid for the 24-h observational averaging period
of interest, and (b) come from separate lead time blocks, each 24 h
in length. For each such block, the 24-h average (or accumulation)
was calculated for each available ensemble member. The average
of these ensemble averages or accumulations provided an overall
cross-ensemble average. This procedure provides individual
ensemble averages and a cross-ensemble average for each 24-h
lead time block going out to a lead time of 720 h for ICRM-CFS2
and 336 h for WRF. Referring to Fig. 7, one can see that what is
denoted a ‘‘00 h lead’’ forecast here is actually available�24 h prior
to verification time. With ICRM-CFS2 having four-member ensem-
bles and four initializations per day, there are a total of 16 24-h
averages in each daily-ensemble. For WRF, with 20 member
ensembles and two initializations per day, each daily-ensemble
consists of 40 24-h averages. This processing scheme provides both
a scalar value (the daily-ensemble mean) and a set of equiprobable
ensemble outcomes for comparison with the observed data. During
the period of evaluation and for the WRF processing we used at
least 115 cases for MAM and at least 150 cases for NDJF.

An alternative processing scheme was used to incorporate the
‘‘single four-member ensemble per day’’ ICRM-CFS1 data (see
Fig. 7). For this method, only the data from the overall cross-
ensemble average final forecast in each 24-h block was used
(yellow2 shading in Fig. 7) to compare with the observations.

3.2. Statistical performance measures

These measures compare each observation with a single corre-
sponding multi-ensemble mean of forecasts verifying at the obser-
vation time at some defined forecast lead time. In the discussion
that follows we use the following nomenclature:

OT – 24-h average (or accumulation for MAP or inflow) observed
at time T (‘‘the verification time’’).
FT,L – 24-h average (or accumulation for MAP or inflow) cross-
ensemble average forecast at lead time L, verifying at time T.
FT,L,E – 24-h average (or accumulation for MAP or inflow) for sin-
gle ensemble member E at lead time L, verifying at time T.

Symbols with a prime (0) indicate departures from the respec-
tive mean of a variable (‘‘anomalies’’); ‘‘NT’’ is the length of the
record, ‘‘NE’’ is the number of ensemble members; ‘‘NL’’ is the
maximum lead time; ‘‘T’’ designates a particular verification time,
‘‘E’’ designates ensemble number and ‘‘L’’ the nominal lead time,
a single value (0, 24, 48, etc.) assigned to each ‘‘forecast block’’
(see Fig. 7). Statistics are generated as a function of lead time
(1, . . .,NL), variable (MAP, MAT, INFLOW) and season. Two
‘‘seasons’’ were defined on the basis of the verification time to
approximately differentiate between non-melt and melt domi-
nated settings; these are November–February (NDJF, non-melt)
and March–May (MAM, melt). No validation was done for the
dry season June–October.

For a given variable, lead time (L), and season triplet, corre-
sponding observation-forecast sets were constructed. For example,
each observation during NDJF (OT) was matched (where possible)
with the ensemble forecast data for lead L validating at time T,
these are FT,L,E, E = 1,2, . . .,NE. The cross-ensemble average of the
24-h ensemble means is then

FT;L ¼ NE�1
X
NE

ðFT;L;EÞ ð2Þ

where R() denotes the arithmetic sum of the quantity in parenthe-
sis. An initial calculation gives the overall seasonal mean for the
observations

OBAR ¼ NT�1
X
NT

ðOTÞ ð3Þ

and for the forecast values verifying during that season at lead time
(L)

FbarL ¼ NT�1
X
NT

ðFT;LÞ ð4Þ

Some statistics are derived using departures from these mean
values and these are indicated with a prime in the discussion
below.

The statistical measures defined below (correlation, bias, bias
fraction, Brier Skill Score, ROC area) give a single value for each
f



Table 6
Forecast-observation contingency table.

Event observed Event not observed

Event forecast
(warning)

True positive (HITS) False positive (FALSE ALARMS)

Event not forecast
(no warning)

False negative (MISSES) True negative (CORRECT
REJECTIONS)

Total Total events (NE) Total non-events (NE0)
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basin or sub-basin, each season, each forecast lead time (in 24-h
blocks) and each variable.

3.2.1. Non-probabilistic measures
Non-probabilistic measures express the ‘‘forecast’’ for a particu-

lar verification lead time as a single value, in this case the ‘‘grand
average’’ cross-ensemble mean. The three non-probabilistic mea-
sures used in the analyses presented in this section (correlation,
bias and bias fraction) are described below.

Correlation [R; recall for given basin or sub-basin, variable, and
season, there is one value for each lead time (L)].

RL ¼ COF=ðSOSFÞ ð5Þ

where

COF ¼ NT�1
X
NT

ðO0T F 0T;LÞ ð6Þ

SO ¼ NT�1
X
NT

ðO0T O0TÞ
" #1=2

ð7Þ

SF ¼ NT�1
X
NT

ðF 0T;LF 0T;LÞ
" #1=2

ð8Þ

Correlation gives a useful measure of linear association between
the observations and the forecast ‘‘grand means’’. Correlation does
not account for bias, can be sensitive to outliers, and ranges from
�1 to 1.

Bias [B]

BL ¼ FbarL � Obar ð9Þ

Bias is used for evaluating systematic errors in MAT.
Bias fraction [BF]

BFL ¼ FbarLObar�1 ð10Þ

Bias fraction is used for evaluating systematic errors in MAP and
INFLOW.

3.2.2. Probabilistic measures
In contrast with the non-probabilistic measures, probabilistic

measures include information from the individual ensemble means
(F) and thus deal directly with questions bearing on the forecast
probability of particular outcomes. These measures were not calcu-
lated for the ICRM-CFS1 system because its output was limited to
four ensemble members per 24-h period; too few to provide robust
probabilistic statistics.

3.2.2.1. Brier skill core. The Brier skill score (BSS) assess the accu-
racy of forecast probabilities for a pre-defined event to occur
(e.g., Hsu and Murphy, 1986). The basic idea is to define a specific
‘‘event’’ of interest, for example, whether measureable rain will fall
during the verification time. The ensemble forecasts are grouped
according to the forecast probability (PF) that an ‘‘event’’ will occur;
PF is defined as the fraction of ensemble 24-h forecast means (FT,L,E)
that exceed the threshold for an event. For example, in the analyses
reported here, the groups covered the ten probability of occurrence
categories 0–10%, 10–20%, . . .,90–100%. For each of these catego-
ries, the actual frequency of occurrence of events is calculated from
the observations verifying with the forecasts in a given bin.

For a given set of probabilistic forecasts and observations, the
BSS is defined as follows:

BSS ¼ 1� ðBS=BSrefÞ ð11Þ

where BSref is the Brier Score of a reference forecast. In this case the
reference forecast is the climatological frequency of occurrence of
events (the ‘‘base rate’’); it gives a score for always forecasting the
probability of the event as the base rate. BS is the ‘‘Brier Score’’
(or ‘‘half Brier Score’’) given by

BS ¼ NT�1
X

k¼1;NT

ðyk � okÞ2 ð12Þ

where NT is the number of forecast-observation pairs available, yk is
the forecast probability of an event (the fraction of ensemble mem-
bers exceeding the event threshold), and ok is a binary observation
value taking the value of 1.0 if an event occurred, and 0.0 otherwise.

BSS gives a measure of the ‘‘improvement over climatology’’
(BSref being the climatological score) in terms of the forecast sys-
tem’s actual Brier Score. Note that BSS can range from 1 (perfect)
to �1. Because BSS is an aggregate measure, in our results there
is a single BSS value for each lead time, basin, variable, and season,
so the results are presented as plots of BSS as a function of lead
time for each basin, variable and season.

Note that for the performance assessment period of the CFS2-
driven ICRM forecasts, relatively few precipitation events are avail-
able for the MAM season to compute the observed climatological
frequencies given the model forecast. As such, the BSS of this
model and season are subject to a great deal of uncertainty and
are not presented here.

3.2.2.2. ROC area. Like the reliability-based measure discussed
above, the Relative (or Receiver) Operating Characteristic (ROC)
Area measure concerns the accuracy of probabilistic forecasts of
a pre-defined ‘‘event’’ (e.g. Green and Swets, 1966; Mason and
Graham, 2002; Kharin and Zweirs, 2003), but for these measures
the forecast-observations pairs are stratified according to whether
or not an event was observed (and not whether an event was fore-
cast as in the BSS score). The contingency Table 6 presents the ele-
ments and notation needed to apply the ROC concept to an event of
interest (e.g., MAP greater than a certain percent of its observed
distribution).

Referring to Table 6, the ‘‘hit rate’’ (HR) is calculated as the
number of true positives divided by the total number of events
(HITS/NE). Similarly, the ‘‘false alarm rate’’ (FR) is calculated as
the number of false positives divided by the number of non-events
(FALSE ALARMS/NE0). The ROC curve is then developed by estimat-
ing the (HR, FR) pairs for various warning thresholds (e.g., percent-
ages of the observed distribution of MAP).

Just as the Brier Skill Score provided an aggregate (albeit
reduced) measure for the reliability diagram, the area under the
ROC curve (ROC area, or ‘‘AROC’’) summarizes the information on
the ROC curve; AROC above 0.5 (the area under the 45� ‘‘guessing’’
line) is considered skillful. As an aggregate measure, AROC results
are displayed as a function of lead time for each basin, variable, and
season classification (the computation of the AROC was done using
a trapezoidal rule, which is conservative as it underestimates the
area below the ROC curve for positive ROC values).

The following sections summarize the demonstration results in
terms of forecast performance presenting samples of cases for
illustration purposes. The analyses of INFORM system forecast per-
formance produced a very large volume of results. For MAP and
MAT, there are results for each of the individual sub-basins com-



K.P. Georgakakos et al. / Journal of Hydrology 519 (2014) 2978–3000 2989
prising the five major reservoir catchments, lead times ranging up
to 384 h, three atmospheric models, and two seasons. Inflow
results are also numerous, but are only for a single variable (main
reservoir inflow) in each main catchment. This volume of results
precludes showing all but a representative sample to give a general
sense of system performance as a function of the variable space
coordinates noted above; a complete set of results are available
in HRC-GWRI (2013, Appendix E).

The presentation of results begins with consideration of MAP
and MAT. First, we present an example of correlation and bias
results for March–May MAP and MAT in the Folsom reservoir
catchment. Next, we give a short discussion of the potential for
very long lead MAP forecasts. This is followed by an example of
results displayed on a geographic basis (by subcatchment), in this
case for WRF model MAP and MAT correlation and bias for the non-
melt (NDJF) and melt (MAM) seasons noted earlier. The presenta-
tion of MAP and MAT results closes with samples of the Brier Skill
Score (BSS) and ROC area (AROC) results for Oroville reservoir. The
second part of the results section presents results for reservoir
inflow. These discussions give results in terms bias fraction, corre-
lation, BSS and AROC. The third and final part of the results section
gives a sense of the effectiveness of the bias correction procedures.

It should be noted that the performance indices selected
measure the performance of the precipitation, temperature and
reservoir inflow forecasts with respect to observations or reference
values of such quantities over a period of time. They do not directly
measure the utility of the forecasts for reservoir management,
which is the ultimate performance evaluation for the INFORM
Fig. 8. Bias and correlations of INFORM RTFS forecasts with respect to observations for
MAP and difference for MAT), and for cross-correlation of daily accumulated precipitatio
right panels are for MAP. In each panel bias or correlation is shown as a function of forec
representing the CFS1-ICRM forecast results, and red lines representing the CFS2-ICRM re
the Folsom watershed. (For interpretation of the references to color in this figure legend
system. However, the present type of performance evaluation is a
necessary first step because of the significant dependence of the
forecast utility for reservoir management on forecast biases and
ensemble reliability (e.g., Georgakakos and Graham, 2008; Yao
and Georgakakos, 2001).

3.3. MAP and MAT assessments

3.3.1. Biases and correlations
Fig. 8 shows sample results for MAP and MAT correlation and

bias for all the available model forecasts, the MAM season and
for the Folsom drainage basin sub-catchments. For Folsom, the
WRF ensemble MAP forecasts show very high correlations
(P0.80) with observations for lead times out to about 5 days
(120 h) and good correlations (P0.60) with observations for lead
times out to about 8 days (192 h). Significantly lower correlations
are shown for the ICRM MAP ensemble forecasts for both the
CFS1 and CFS2 forcing, with CFS2 forcing showing slightly better
results (correlations P 0.6 for lead times up to about 4 days). There
are non-negligible correlations shown for ICRM-CFS2 forecasts for
lead times of about 20 days and beyond. This will be discussed
later in this section.

MAP forecast fractional bias is clustered around 2 for the WRF
forecasts while it is much greater for the ICRM-CFS1 forecasts for
a few subcatchments and much lower than 1 (with one implying
no bias) for subcatchments with low sloping terrain (these mostly
at low elevations). Fractional bias for ICRM-CFS2 MAP forecasts is
less than 2 for all the subcatchments and for most of forecast lead
MAT and MAP in Folsom subcatchments. The figure panels are for bias (fraction for
n and daily average temperature for the MAM season. Left panels are for MAT and

ast lead time, with green lines representing the GFS-WRF forecast results, blue lines
sults. For each case, multiple lines signify results for various sub-catchments within
, the reader is referred to the web version of this article.)



Fig. 9. MAP observations and forecasts for an event in a Folsom subcatchment. The
observations are in black line with filled circles, the 432-h-lead ICRM-CFS1 forecast
is shown in red while the 480-h-lead ICRM-CFS1 forecast is shown in blue, and the
WRF 3336-h-lead forecast is shown with green. (For interpretation of the references
to color in this figure legend, the reader is referred to the web version of this
article.)

Fig. 10. Subcatchment distribution of MAP corre
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times (except for some long lead times for a few subcatchments).
Like the ICRM-CFS1, these forecasts show <1 bias fraction in
subcatchments with low terrain slope. The WRF and ICRM-CFS2
results exhibit weak dependence of bias with lead times, a point
discussed later in relation to bias adjustment.

The MAT forecast correlations are high for all cases, with very
high values (P0.80) for WRF and ICRM-CFS2 out to about 8 days,
while ICRM-CFS2 maintains correlations of 0.6 for several sub-
catchments out to lead times greater than 25 days. ICRM-CFS1 also
exhibits high correlations, but these remain lower than those of
both other forecast models for all lead times and catchments. In
terms of bias, the WRF model forecasts have lower biases than
the other two forecast models that exhibit a cold bias for most sub-
catchments and lead times. As with MAP it is found that MAT
depends only weakly on lead time (up to the maximum lead time
of 16 days for GFS and up to about 25 days or so for ICRM). The
high correlations for ICRM MAT at long lead times support the
potential use of the ensemble forecasts for the prediction of melt
out to time scales of several weeks and underscore the potential
use of high resolution dynamical ensemble forecasts for the
INFORM region and the need for the requisite boundary data from
the large-scale long-lead forecast NCEP models.
lation and bias fraction for the WRF model.
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As noted in HRC-GWRI (2013), the results for the rest of the
watersheds of interest and for the same (MAM) season, are quali-
tatively similar with those discussed for the Folsom watershed.
In all cases, the WRF model ensemble MAP forecasts have consis-
tently high correlations for lead times less than about 5 days and
outperform the ICRM model ensemble forecasts in terms of
correlation for these lead times. The WRF MAP results do show a
systematic positive bias (bias fraction �2) for these lead times.
Short lead times for ICRM-CFS2 carry MAP-forecast correlations
near or above 0.6 except for a few cases where the highest correla-
tion reaches 0.5. For lead times 16–20 days, the MAP-forecast cor-
relation for the ICRM-CFS2 (and the ICRM-CFS1) exhibits
anomalously high values that consistently reach or exceed 0.4 in
all cases. Biases for ICRM MAP are <1 for several of the subcatch-
ments for all watersheds.

The strength of ICRM-CFS2 is exhibited in the MAT ensemble
forecast predictions that maintain high correlation to observations
for long lead times during this snow melt season (MAM). For most
subcatchments, there is a cold bias for ICRM forecasts. The ICRM-
CFS1 model has lower skill for all lead times but maintains corre-
lations P0.4 even for lead times greater than 15 days during this
MAM season. It exhibits less of a cold bias than the ICRM-CFS2
for most subcatchments.

Results have also been obtained for the NDJF season (snow
accumulation season for high elevations). There are no ICRM-
CFS2 results for this season and the results pertain only to the
WRF and ICRM-CFS1. These results are not shown for previty but
are briefly summarized below. The MAP results show consistently
high correlations of the WRF model forecasts for lead times up to a
few days with correlations dropping rapidly at longer lead times
and with a bias ratio that is 2 or higher. It is notable that the
MAM season exhibits substantially longer persistence of high cor-
relations than the NDJF season for the WRF and to a lesser degree
for the ICRM-CFS1 for MAP forecasts. The ICRM-CFS1 shows sub-
stantially lower correlations for MAP than WRF, and has a milder
Fig. 11. Subcatchment
slope of decline with lead time. Biases for this system vary signif-
icantly among watersheds. In this season and for this ICRM model
configuration too, there is high correlation in long lead times sug-
gesting skill in the window between 16 and 20 days. The MAT cor-
relations are somewhat lower in the NDJF season than in the MAM
season for both WRF and ICRM-CFS1. Both models indicate broad-
ening of the subcatchment differences in MAT correlation in the
NDJF season with biases ranging from �2 �C to +2 �C for WRF
and 1 �C or 3 �C for ICRM-CFS1.

The notably high correlations between ICRM MAP forecasts and
observations for lead times 15–20 days are a consistent feature in
all basins during the MAM season in Fig. 8; this raises the question
whether these higher values are due to statistical behavior or rep-
resent real skill. Although this cannot be answered unambiguously
with the present limited data, one can test whether there is consis-
tent behavior of the models for these long lead times when there is
an event. If there is such consistent behavior, then one cannot dis-
miss the possibility of real forecast skill for these lead times when
there is a significant event. An example of a mid-February 2011
event apparently forecast at long lead times is depicted in Fig. 9.

Fig. 9 shows the MAP observations and ICRM-CFS1 forecasts
(both lead times of 432 h or 18 days, and 480 h or 20 days) and
the WRF forecast with a lead time of 14 days. In all forecast cases,
there is evidence of skill in predicting the timing of this mid
February 2011 event, with sharper predictions for the ICRM-CFS1
with a lead time of 18 days. This consistency in forecast perfor-
mance between the same model and different lead times and
between different models supports the conjecture that there is skill
at these lead times, at least for certain events. Inasmuch as the GFS
system does not use dynamical sea surface temperature forecasts,
it is conjectured that this example of skill seen in both GFS and
CFS1-driven long lead forecasts is due to slow internal atmospheric
process. Additional data and analyses are necessary to confirm
this conjecture but it is in line with the findings of Georgakakos
et al. (2010a,b).
average elevations.
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The geographical distribution of the bias and correlations for
the WRF model MAP for a 48-h lead time and for both seasons is
shown in Fig. 10. These are representative of most results and a
complete set of plots is in HRC-GWRI (2013, Appendix E) for all
three models (WRF, ICRM-CFS1, and ICRM-CFS2) and for both
MAP and MAT. Fig. 11 shows the subcatchment average elevations
for easy reference.

A strikingly non-uniform spatial distribution in WRF MAP cor-
relation between forecasts and observations is apparent in
Fig. 10. For the lead time of 48 h, the MAM season shows higher
correlations than the NDJF season for most basins apart from the
northeastern subcatchments of the Shasta watershed and some
of the southern subcatchments of the Folsom watershed, which
show lower correlation in MAM. Relatively low correlations are
shown for both seasons for large subcatchments of the Shasta
watershed and certain subcatchments of the Oroville watershed
in higher elevations. Referring to the map of catchment elevations
(Fig. 11) shows that all catchments except those in northeastern
Shasta drainage have correlations in excess of 0.7. This is important
for the higher elevation subcatchments (e.g., high elevations of
Yuba and Folsom watersheds and Shasta watersheds of higher ele-
vation) where snow accumulation and melt are significant
processes.
Fig. 12. Brier Skill Score for MAP and MAT in Oroville watershed. Only positive valu
High MAP bias fractions are prevalent for most subcatchments
for both seasons, with higher biases generally shown for higher
elevations (sparse observations over the high terrain may contrib-
ute to this tendency). Variability among subcatchments is substan-
tial in both seasons, but with NDJF exhibiting (generally) lower
bias fraction for the subcatchments.

The geographically distributed results for the ICRM-CFS1 and
ICRM-CFS2 models (not shown) for MAP forecasts show substantial
spatial variability in the MAM season, with low elevation basins
generally showing lower correlations and high elevation basins
showing higher correlations; this is to be expected because ICRM
uses an orographic precipitation model that depends on slope for
the generation of moist updrafts. For most subcatchments, ICRM-
CFS2 performs better with higher MAP correlations and fractional
bias closer to 1. For the case of NDJF and ICRM-CFS1, notable
increases in correlation are shown in comparison to the MAM
season and the same model. Biases are similar between the two
seasons except for the high elevation (>1400 m) northeastern
subcatchments of Shasta watershed where the bias fraction for
the NDJF season is much higher (significant MAP over-estimation)
than that of the MAM season.

The MAT forecast bias and correlation subcatchment plots for
both seasons and for all three models (not shown) show very high
es of the BSS are shown to evaluate the dynamical-model forecasts of INFORM.
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correlations over all subcatchments in the MAM season by the WRF
while higher spatial variability in correlation is seen for the NDJF
season. Bias is generally low for this lead time with cold bias for
the higher elevations, more so in NDJF than in MAM. For the
MAM season correlations for the ICRM-CFS1 and ICRM-CFS2 are
higher in the southern subcatchments than in the northern sub-
catchments (especially so for the ICRM-CFS1 forecasts). Generally
less uniform results for correlations have been obtained with ICRM
than with the WRF for the 48-h lead time. Cold bias is exhibited by
both versions of ICRM for the MAM season particularly for some
lower elevation catchments. For the NDJF season, the ICRM-CFS1
MAT forecasts exhibit lower correlations than for the MAM season,
and these NDJF results have a rather uniform warm bias even for
the higher-elevation subcatchments, apart from the Trinity
watershed where they have a cold bias.

3.3.2. Probabilistic performance measures
The Brier Skill Score (BSS) has been computed for both seasons

and for both the models. As noted earlier, the ICRM-CFS2 model
results are only available for the MAM season and for the single
year 2012. Year 2012 did not contain an adequate number of pre-
cipitation events to allow stable statistics for the climatological fre-
quencies conditional on a forecast frequency interval that are
Fig. 13. AROC values of MAP and MAT ensemble fore
necessary for the BSS. Thus, the emphasis of this discussion is on
the WRF MAP and MAT results that include two years of operation
(2011 and 2012) for both, and on the ICRM-CFS2 MAT results.

Fig. 12 shows the WRF MAP and MAT BSS for multiple lead
times and for all the subcatchments of the Oroville watershed
and for both seasons NDJF and MAM. Positive BSS is indicated
throughout the WRF forecast lead time range (maximum lead time
of 16 days), with MAP forecasts for NDJF indicating higher BSS than
those in MAM. Opposite seasonal performance tendencies appear
for MAT forecasts, with substantial degradation of MAT forecast
reliability for the NDJF season. Large differences between sub-
catchments are shown in MAT reliability for the NDJF season and
with lower range of differences in MAP reliability for the MAM sea-
son. MAP ensemble forecast BSS values are above 0.2 even out to
8 days indicating some skill, while very good reliability is exhibited
by the MAT ensemble forecasts of WRF out to 4 days lead time (BSS
near or above 0.8 for all subcatchments of Oroville watershed). It is
anticipated that these MAT results derive from the WRF NOAH land
surface component formulation, which has only recently been
improved (e.g., Wang et al., 2010).

The BSS for the MAM season and for the ICRM-CFS2 MAT
ensemble forecasts (lower right panel of Fig. 12) shows positive
values out to 16 days then increasing again beyond 20 days,
casts for the Oroville watershed subcatchments.
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possibly reflecting seasonal temperature trends. The MAT BSS for
ICRM-CFS2 is lower than that of WRF for this season for most lead
times and subcatchments, reaching maximum values of about 0.7
for most subcatchments. Overall, Fig. 12 reveals good reliability
of the INFORM RTFS ensemble forecasts with respect to climatolog-
ical forecasts of both MAP and MAT out to about 16 days.

Comments analogous to those made for the Oroville watershed
above apply to the other watersheds as well (not shown here but
can be found in HRC-GWRI, 2013). Notable exception is the poor
reliability performance of the MAT ensemble forecasts for a few
catchments of the Folsom watersheds, for short lead times and
for the NDJF season. Estimation of the MAT observed values for
that season generally carries significant uncertainty, especially
for high elevation areas.

Fig. 13 shows the AROC index for MAP and MAT multi-lead fore-
casts as a function of lead time for all the subcatchments of the
Oroville watershed and for the WRF and ICRM-CFS2 models and
NDJF and MAM seasons (ICRM-CFS2 only available for the MAM
season).

The results of Fig. 13 show skillful forecasts (>0.5) in all cases
and for all leads (<16 days) for the WRF model. For the ICRM-
CFS2 model, MAP forecasts have good skill for all but two
subcatchments for lead times out to 18 days, and for most sub-
catchments some skill out to 30 days. The MAT ensemble forecasts
Fig. 14. Bias fraction of reservoir inflows for the MAM season (Upper Panel) and the
NDJF season (Lower Panel). No forecasts from ICRM-CFS2 are available for the NDJF
season.
from the ICRM-CFS2 model have good skill for all subcatchments
out to a 30-day lead time. Generally, for MAM and for shorter lead
times (<10 days) for MAP the WRF outperforms the ICRM-CFS2,
beyond this the skill is comparable for both models. Comments
analogous to those made above for the Oroville watershed apply
to the other watersheds as well. Generally, the AROC performance
index indicates good skill even out to long lead times for the major-
ity of the watersheds and for both MAP and MAT.

3.4. Reservoir inflow assessments

3.4.1. Biases and correlations
The bias and correlation errors of the reservoir inflows (mean

daily flow) for the range of lead times out to a month or so have
been examined for the forcing from the WRF and the ICRM-CFS2.
In the discussion below we refer to the forcing model to distinguish
system inflow forecasts (e.g., WRF indicates MAP and MAT forcing
from the GEFS-WRF model is used to drive the snow, soil and rout-
ing models). Fig. 14 shows the fractional biases for both WRF and
ICRM-CFS2 and for the MAM and NDJF seasons. The biases for
the MAM season appear to be weakly varying with forecast lead
time (except for Trinity inflows for the WRF model), and range
from about 1.2 (Yuba, New Bullards Bar) to about 2.0 (Oroville)
for WRF, and from about 0.7 (Shasta) to about 1.8 (Oroville) for
Fig. 15. Correlations of reservoir inflows for the MAM season (Upper Panel) and the
NDJF season (Lower Panel).
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ICRM-CFS2. The bias difference among inflows to different reser-
voirs is higher for the ICRM-CFS2 than for the WRF. Lowest bias
for WRF is for New Bullards Bar inflows of the Yuba River (1.2)
and for ICRM-CFS2 is for Trinity reservoir inflows (0.85), with
New Bullards Bar inflows a close second (1.25).

The bias for the NDJF season (for the WRF only) is shown in the
lower panel of Fig. 14. There is an increasing trend in the bias
fraction for this season for the WRF. Shasta forecast inflow has
the lowest bias fractions, near 1 in short lead-times and up to 1.4
at the 20-day lead time, while Folsom forecast inflows have the
highest bias fraction for lead times longer than 3 days (2.2 to
greater than 2.5). New Bullards Bar inflows on the Yuba River have
the highest bias for lead time shorter than 3 days (values in the
range 1.5–2). The accumulation season NDJF has higher biases than
the melt season MAM.

The correlation for the MAM and NDJF seasons between model
forecasts and observations of mean daily FNF inflows is shown in
Fig. 15 for both WRF and ICRM-CFS2. These show that for the
WRF model and for MAM, Folsom, Trinity and Shasta inflows have
the highest correlations, remaining greater than 0.5 even out to
12 days, maintaining values greater than 0.7 out to a 4-day lead
time. The correlations for New Bullards Bar forecast inflows on
the Yuba River and for Oroville forecast inflows exhibit lower
correlations with values greater than 0.5 maintained only up to a
Fig. 16. BSS for reservoir inflows for the MAM season (Upper Panel) and for the
NDJF season (Lower Panel).
2-day lead time, dropping precipitously after that to levels of
about 0.2.

In comparison to WRF, significantly lower correlations in reser-
voir forecast inflows are exhibited by the ICRM-CFS2 model and for
MAM, except for the Trinity basin for which values of 0.5 are
shown for lead times out to more than 20 days. For short lead
times (62 days), Trinity and Folsom forecast inflow correlations
range from �0.5 to 0.75. At longer lead times, the Folsom forecast
inflow correlations fall substantially. The behavior of New Bullards
Bar, Oroville and Shasta inflows shows an initial dip and then an
increase to fall again to negligible levels. For Shasta, the increase
brings the correlations to the level of 0.5 for a lead time up to
10 days, while for the Oroville and New Bullards Bar inflows the
correlations are less than 0.3 in all cases.

For the WRF and for the NDJF season, the correlations remain
above 0.5 (Fig. 15, Lower Panel) for lead times out to 10 days or
so. On average and for lead times out to 8 days, Shasta reservoir
forecast inflows exhibit the highest correlations and Folsom reser-
voir forecast inflows the lowest.

For the interpretation of the results presented, one must con-
sider the development of errors in the integrated forecast system
of INFORM, which consists of the large-scale NCEP model forecasts
(GFS and CFS), the downscaling model forecasts (WRF and ICRM),
and the snow-soil-routing model inflow forecasts. Thus, the
Fig. 17. AROC for reservoir inflows for the MAM season (Upper Panel) and for the
NDJF season (Lower Panel).
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development of errors in the inflow forecasts is a combination of
MAP and MAT errors for the subcatchments of the watershed of
interest, initial condition errors in the snow-soil-routing model
for these subcatchments and river segments, and the hydrologic
model parameter errors.
3.4.2. Probabilistic performance of reservoir inflows
Fig. 16 shows the BSS values for multi-lead reservoir inflow

forecasts for the MAM and NDJF seasons from the WRF and
ICRM-CFS2 models. The event used is that the flow is greater than
80% of climatological flows. For the NDJF season and WRF, values
range from �0.2 (lowest for the Trinity reservoir) to �0.6 (Folsom
reservoir), with BSS values maintained at about the 0.5 level out to
lead times of about 7 days. Folsom inflows exhibit the largest skill
fluctuations with lead time for this season. Analogous results for
the MAM season for the WRF show low skill for all watershed
inflows except Trinity and Folsom for which it is moderate (0.2
to more than 0.5) for lead times out to 5 days or so. Folsom inflow
forecasts have positive skill for short lead times, while Yuba and
Oroville inflow forecasts essentially show no skill for this season.
It is likely that the BSS values are low in part because the number
of inflow events available for the validation is low. The BSS score is
unstable when the number of events used to compute the score is
low. For example, for WRF, just two seasons of events were used to
compute the BSS performance index, and for the high threshold of
80% the number of events for come deciles was very low.
Fig. 18. Bias and correlations of INFORM RTFS forecasts with respect to observ
The AROC (area below the relative operating characteristic
curve) values for the MAM and NDJF seasons are shown in
Fig. 17, respectively, for all reservoir inflows. Significant skill is
shown for AROC throughout the range of lead times for WRF driven
inflow forecasts and for the NDJF season (values above 0.8 for all
cases). Lower skills are exhibited for the MAM season but with
good performance for Folsom, Trinity and Shasta inflows for all
lead times out to 16 days, and for Yuba (New Bullards Bar) and
Oroville inflow forecasts for lead times out to at least 4 days.
Greater differences among watersheds exist in the MAM season
than in the NDJF season, presumably because of the presence of
snow in the upper regions of watersheds and dependence of inflow
forecasts on both MAP and MAT forecasts in those regions. The
ICRM-CFS2 has AROC greater than 0.5 only for short lead times
for all reservoir inflow forecasts, and for those of the Trinity reser-
voir exhibiting skill out to more than 20 days.
3.5. MAP and MAT bias adjustment impacts

Data preparation procedures were essentially identical for MAP
and MAT and are summarized in Appendix B. The procedures
produce separate forecast calibration factors (CMAP and CMAT)
for MAP and MAT, specific to a given season and sub-catchment
by comparing forecast values and observations.

The results for the correlation and bias performance indices are
exemplified in Fig. 18 for the two models, the MAM melting season
ations for MAT and MAP in Folsom subcatchments – post bias adjustment.
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and for the Folsom Reservoir contributing subcatchments. In all
cases the post-adjustment results show substantially lower bias
than the original results (Fig. 8) and correlations improved or
stayed the same in all but for one subcatchment for MAP and for
shorter lead times. Detailed results are included in HRC-GWRI
(2013, Appendix F) for all the cases and lead to a similar
conclusion.

Results pertaining to reliability for the post bias-adjusted
results have also been obtained for all cases available in order to
examine the impact of the bias adjustment methodology. No sig-
nificant changes were observed with respect to the original results
(without bias adjustment as shown for example in Figs. 12 and 13).
The overall conclusion for the validation of the MAT and MAP bias
adjustment procedure is that the probabilistic methodology used
provides useful results as it corrects the bias well for most lead
times and leaves essentially unaffected the performance of the
models with respect to cross-correlations and probabilistic
measures.

The question is whether such bias adjustments are useful for
the reservoir inflow forecasts. Note that these inflow forecasts
depend on the evolution of both MAP and MAT, and on their
concurrent variability, and that adjustments to those will change
not only liquid precipitation and evapotranspiration but snow
Fig. 19. Bias fraction of reservoir inflows for the MAM (Upper Panel) and NDJF
(Lower Panel) seasons – post bias adjustment.
accumulation and melt as well. The latter affects reservoir inflows
during the spring melt season.

Figs. 19 and 20 present the reservoir inflow performance
metrics of bias fraction and cross-correlation with observations
for all reservoirs, all seasons and both cases of hydrologic-model
forcing (WRF and ICRM-CFS2). The bias results indicate substantial
improvement with respect to the original reservoir inflow metrics
of Figs. 14 and 15 for most basins, though the Trinity reservoir
inflow forecasts maintain high bias for NDJF and for the WRF at
all lead times.

The cross-correlations in Fig. 20 show slightly modified results
than those originally obtained (without bias adjustment in Fig. 15)
except from the ICRM-CFS2 forced hydrologic model forecasts for
MAM that have improved (higher correlation values) substantially.
The short lead time forecasts of the WRF-forced hydrologic model
using the adjusted MAP and MAT exhibit lower correlations with
the observations than those using the unadjusted forecast data.
This result manifests the sensitivity of the reservoir inflow fore-
casts to simultaneous changes on the MAP and MAT forcing.

Probabilistic assessments were made for the reservoir inflow
forecast ensembles after bias adjustment of the MAP and MAT as
well. The results are basically consistent with those discussed
above and indicate moderate improvements with respect to the
original results. Thus, the most important impact of adjusting the
MAP and MAT ensemble forecasts for bias is the improvement in
the bias of the ensemble reservoir inflow forecasts.
Fig. 20. Correlations of reservoir inflows for the MAM and NDJF seasons – post bias
adjustment.
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4. Conclusions and recommendations

The main conclusions from these analyses are discussed below:

(1) Impressive skill was found for MAP and MAT from the WRF
forced by GEFS ensemble forecasts and to a lesser degree for
the ICRM forced by CFS2 ensemble forecasts for the tributary
subcatchments of the INFORM domain in Northern Califor-
nia. The results show that these models can be used to pro-
vide useful forecasts for the INFORM subcatchments in real
time out to lead times of two weeks both for the snow accu-
mulation (NDJF) and the melt (MAM) periods.

(2) Good forecast skill was found for reservoir ensemble full
natural inflows generated by the WRF-GEFS forcing and
the hydrologic models of INFORM with lead times out to sev-
eral days (4–6 days).

(3) Steady performance-index values throughout the range of
lead times provide clear evidence that bias corrections for
the WRF model for MAP and MAT will be effective and pro-
vide improved flow forecasts. Improved reservoir inflow
forecasts resulted for most reservoir inflows after bias cor-
rection of the WRF-forecast MAT and MAP.

(4) Useful MAT forecast skill is exhibited by the ICRM-CFS2
model for lead times longer than a week, and in some cases
out to four weeks in the MAM season. Additionally, there is
evidence suggesting long-lead skill for the MAP forecasts of
the ICRM-CFS2 (and ICRM-CFS1) for large events in some
mountainous watersheds. Further work and longer data sets
are required to demonstrate that this skill is real and can
result in useful forecast information.

(5) Bias correction of the ICRM-CFS2 produced MAP and MAT
forecasts with a fixed bias correction factor improved the
performance statistics of these forecast variables substan-
tially for almost all lead times. Reservoir inflow benefits on
the other hand were realized in the first forecast week for
most basins, except for the Trinity basin for which correla-
tions of forecasts to observations remain above 0.5 out to
four weeks lead time with bias fractions that are in the range
from 0.7 to 1.3.

The implication of the performance evaluation conclusions for
reservoir management is that the INFORM real-time forecasts pro-
vide skillful quantitative information at least for the first week of
forecast lead times and in some cases much beyond that. They thus
should be of direct benefit at least to reservoir flood control and
energy production objectives. The analysis of the benefits to reser-
voir management, using metrics pertaining to management objec-
tives, is on-going (see initial evaluations in HRC-GWRI (2013)) and
will be reported elsewhere.

An important recommendation is to periodically re-evaluate the
performance of the INFORM real-time forecast component (e.g.,
once 2–3 seasons have past) to provide additional information
for reservoir management. The findings also suggest further evalu-
ation of the simultaneous bias correction of the MAP and MAT val-
ues and their implications for multi-lead reservoir inflow forecasts
during the melt season. This should be done in conjunction of a
recalibration of the operational hydrologic models to reduce simu-
lation biases in some of the basins. The use of reforecasts from a
frozen version of the operational large scale NCEP models appears
fruitful for sharpening the bias correction techniques used.

The current evaluation of the reservoir inflow forecasts was
based on unimpaired flows estimated from observations at regula-
tion sites. Recent work has produced and tested successfully meth-
odologies for accounting for upstream regulation effects on
ensemble forecasts and allows direct comparison of the adjusted
forecasts to streamflow observations (Georgakakos et al., 2012a).
Implementation of these methodologies is recommended as part
of the INFORM forecast component for improved (and more useful)
evaluations of forecast-system performance for reservoir manage-
ment. Lastly, and based on the results of the present work, the
analysis and examination of utility of the long-lead (out to a
month) predictability of significant extreme events in Northern
California with the WRF and ICRM is warranted.
Appendix A. Solution method for To and 2-m air temperature

The numerical solution for the surface temperature T0 and the
2-meter air temperature Ta over a grid in mountainous terrain is
obtained for a single time period with the application of the follow-
ing steps:

� Heat flux into the soil at the surface is set (assumed) equal to
zero.
� Constant wind profiles are assumed in the mixed layer of the

boundary layer and a power law profile in the surface layer of
the boundary layer (last 100 m near the surface).
� Using conservation of potential temperature and mixing ratio

100 levels of T, p and RH are estimated based on the CFS basic
levels (see Tables 2 and 3 for CFS1 and CFS2, respectively) using
vertical linear interpolation.
� Using the same conservation assumptions for potential temper-

ature and mixing ratio, we then interpolate along the horizontal
from the CFS grid to the ICRM grid using inverse square distance
interpolation for all the levels and all the ICRM grid nodes (two
upstream grid points are currently used from CFS). Estimates of
T, p, and RH are thus obtained in a three dimensional grid for
ICRM.
� We apply adiabatic and pseudo-adiabatic adjustment of the T, p,

and RH values at the 2 m reference level near the surface (parcel
ascent given conditions conducive to parcel ascent). The T1 val-
ues obtained are the initial estimates of the reference air tem-
perature that enters the ICRM computations. A sinusoidal
curve is fitted to the temperature solution at this point to inter-
polate from 12 hourly to 6-hourly values (the CFS input is in 12-
hourly intervals).
� With 6-hourly estimates of T1 at hand we apply the surface

energy balance and we solve for the surface temperature T0

with a 6-h resolution.
� An updated estimate of the air surface temperature is a

weighted average of T1 and T0: Ta = Ts w1 + T1 w2 with w1 and
w2 being weights that sum to 1.
� The procedure is repeated with Ta used in place of T1 until there

is convergence within a set tolerance.

It is noted that when there is snow on the ground and the sur-
face (skin) temperature solution is higher than 0 �C, the surface
temperature solution is constrained to be at 0 �C and the residual
heat flux (resulting from unbalanced terms in Eq. (1)) is devoted
to melting snow.
Appendix B. Calibration factors for MAP and MAT adjustment

The procedures for the computation of the calibration factors
for MAP and MAT adjustment are given below.

B.1. Data preparation

This procedure provides observations paired with complete sets
of ensemble 72-h-lead forecasts validating at the observation time.
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(1) Collate pairs of observed and 72-h-lead forecast 6-hourly
MAP (or MAT). This was done combining all validation times
into single data sets (00 and 12 GMT for WRF; 00, 06, 12, and
18 GMT for ICRM-CFS2).

(2) Identify all collated pairs belonging to cases for which all
simulation ensemble members are present, discard other
cases.

(3) Stratify by season MAM and NDJF.

B.2. Derivation of MAP calibration factors

� For each season NDJF and MAM.
(a) Sort the model ensemble 6-hourly 72-h forecasts from the

available cases into 10 quantiles, keeping each forecast
value paired with its corresponding validating observation.
Note that each observed value will occur NE (the number
of ensemble members) times. Use only cases where simu-
lated ensemble values are >1 mm 6-h�1.

(b) For each quantile, calculate the mean (FM) of the forecast
values.

(c) For each quantile, calculate the mean, and 30th and 70th
percentile values of the observed values (OM, O30, O70) paired
with the forecast values in that quantile.

(d) For the 3rd to the 8th quantile, the calibration factor (CMAP)
is defined as OM/FM.

(e) For 1st and 2nd quantiles, CMAP is defined as O30/FM.
(f) For the 9th and 10th quantiles, CMAP is defined as O70/FM.
� For June–October – set CMAP to 1.0.

B.3. Derivation of MAT calibration factors

� For each season NDJF and MAM.
(a) Sort the 6-hourly 72-h forecasts from the available cases

into 10 quantiles, keeping each simulated value paired with
its corresponding validating observation. Note that each
observed value will occur NE times.

(b) For each quantile, calculate the mean (FM) of the forecast
values.

(c) For each quantile, calculate the mean of the observed values
(OM) paired with the simulated values in that quantile.

(d) The calibration factor (CMAT) is defined as OM � FM.
� For June–October – CMAT set to 0.0.

B.4. Use of calibration bias factors

� Apply CMAP as a multiplicative adjustment (‘‘scale’’) to the
simulated forecast MAP values for the appropriate season and
sub-catchment.
� Apply CMAT as an additive adjustment (‘‘offset’’) to the simulated

forecast MAT values for the appropriate season and sub-
catchment.
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