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Introduction	
The	South	Florida	Water	Management	District	commissioned	a	panel	to	perform	a	peer	review	
of	the	Regional	Simulation	Model	and	its	elements,	the	Hydrologic	Simulation	Engine	(HSE)	and	
the	Management	Simulation	Engine	(MSE).	The	members	of	the	Panel	were	Dr.	Rafael	L.	Bras	
(Chair),	Dr.	Victor	M.	Ponce,	and	Dr.	Daniel	Sheer.	The	Panel	reviewed	material	and	prepared	
for	a	workshop	that	was	held	July	24	and	25,	2019	at	the	offices	of	the	SFWMD	in	West	Palm	
Beach,	Fl.	This	report	is	based	on	the	outcome	of	that	workshop	and	the	review	of	material	
before	and	after	the	meeting.	
	
The	Scope	of	Work	listed	the	following	goals	for	the	Peer	Review:	
	

1. “Determining	if	object-oriented	design	and	computational	sequencing	used	in	HSE/MSE	
of	RSM	is	suitable	 for	simulating	the	hydraulics,	hydrology,	and	the	operations	control	
needs	of	the	south	Florida	hydrologic	system;”	

2. “Evaluating	if	our	the	“multiple	editions”	approach	to	numerical	solutions	is	appropriate	
for	use	in	regional	hydrologic	modeling	in	south	Florida,	and	if	this	perpetual	evolution”	
is	leveraging	the	proper	disciplines	and	approaches	and	translating	them	correctly;	

3. “Determining	if	the	RSM	is	generally	applicable	for	hydrologic	modeling	in	south	Florida.”	
	
In	the	process	of	seeking	answers	to	the	above	questions,	the	Panel	raised	several	issues	that	we	
will	 discuss	 in	 some	detail	 in	 the	body	of	 the	 report.	Our	 responses	 to	 the	questions	 can	be	
summarized	in	the	following	way:	

1. The	object-oriented	modular	design	of	RSM	is	valuable.	The	idea	that	elements	can	be	
added	almost	at	will	and	solved	within	the	same	numerical	framework	is	attractive.	The	
platform	 can	 effectively	 integrate	 the	 expertise	 of	 many.	 The	 downside	 is	 that	 the	
framework	is	computationally	complicated	and	its	mastery	challenging.	

2. The	Panel	found	the	“multiple	editions”	confusing	at	times,	although	the	appropriateness	
of	solutions	and	techniques	is	not	in	question.	As	will	be	pointed	out,	the	Panel	advocates	
for	a	true	integration	of	models.	

3. The	Panel	feels	that	the	RSM	formulation	is	appropriate	to	the	hydrology	of	South	Florida.	
	
Before	going	further,	the	Panel	wishes	to	express	its	appreciation	to	the	staff	of	the	District	for	
its	 preparation	 and	 cooperation.	 Furthermore,	 the	 Panel	 states	 that	 the	 District	 has	 a	 good	
product	and	dedicated	employees	who	work	well	under	resource-limited	conditions.	
	
The	following	sections	address	 issues	that	arose	during	the	workshop,	all	related	to	the	three	
questions	above.	
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What	is	the	mission?	What	is	the	right	level	of	complexity?	
	
It	is	important	that	model	development	be	guided	by	the	problem	at	hand.	Once	the	problem	is	
identified	and	understood,	then	the	question	is	what	is	the	proper	modeling	approach	to	solve	
that	problem.	It	is	easy	to	be	absorbed	by	the	modeling	and	the	tool	development	and	lose	sight	
of	why	we	are	doing	it	and	what	is	the	problem	to	be	solved.	Complexity	does	not	necessarily	
“makes	best.”	
	
MSE	development	

1) The	existing	MSE	is	quite	coarse,	with	a	limited	number	of	rule	forms	available	to	a	user.	
2) Creating	objects	that	implement	new	rule	forms	requires	programming	in	C++,	and	is	

and	will	be	beyond	the	capability	of	other	than	model	developers	or	those	rare	
individuals	with	both	programming	and	water	resource	management	experience.	

3) A	simple	language	that	allows	a	non-programmer	user	to	create	new	operating	
strategies	for	both	individual	objects,	basins,	and	system	wide	would	be	highly	
desirable.	A	parser	could	translate	that	language	to	XML.	

4) The	use	of	assessors	to	compute	target	flows	in	the	MSE	is	problematic.	New	assessor	
objects	would	need	to	be	developed	to	implement	any	new	strategy,	limiting	the	utility	
of	the	modeling	software	as	described	above.	Those	objects	will	need	to	be	complex,	
even	in	dendritic	systems,	and	will	require	the	use	of	some	system	solver	in	other	
systems.	An	optimization	solver	formulation	for	the	MSE	is	recommended.	It	will	need	
to	be	substantially	more	capable	than	the	current	lpsolve-based	formulation.	Some	of	
those	capabilities	(e.g.	continuous	balancing	of	weighted	deviation	from	targets,	
iteration	to	convergence,	etc.)	will	require	the	iteration	of	the	solver	itself.	

5) The	SFWMD	may	wish	to	consider	if	model	utility	is	the	overarching	goal	of	RSM	
development.	If	so,	tradeoffs	between	utility,	cost,	time	to	completion,	open	source	and	
other	coding	requirements	should	be	carefully	weighed.	

6) To	be	truly	useful	to	users	other	than	those	with	access	to	the	model	developers,	the	
MSE	needs	a	fully	functional	GUI.	There	are	many	water	management	simulation	
software	packages	with	GUIs	that	can	serve	as	design	guides.	

	
	
Models	integration	

It	is	difficult	to	follow	the	different	“models”.	The	Panel	was	confused	with	and	surprised	by	the	
fact	 that	 the	 basin	 model	 and	 the	 mesh	 model	 (above	 and	 below	 the	 “red	 line”)	 were	 not	
integrated.	The	lack	of	 integration	limits	utility	and	make	full	utilization	of	RSM	by	other	than	
agency	staff	very	difficult.	The	lack	of	integration	should	be	made	very	clear	in	any	presentation	
or	discussion.		
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The	approach	of	setting	gate	openings	and	running	a	much	shorter	time	step	holds	promise	for	
computational	efficiency,	temporal	resolution	and	linkage	with	MSE.	In	particular,	a	Basins-
structured	LP-based	MSE	could	determine	flows	at	structures.	These	flows	could	be	converted	
to	gate	openings,	and	the	grid-based	model	run.	Actual	flows	at	gates	set	by	MSE	would	be	
different	coming	out	of	the	grid	solve.	These	could	be	set	as	constraints	in	the	MSE	which	
would	then	be	resolved	to	provide	a	consistent	solution	for	both	models.	This	approach	might	
resolve	the	problem	of	integrating	the	Basins	and	grid	solutions	and	should	be	pursued.	

Another	example	of	lack	of	integration	is	the	“hydrology	model”	output	serving	as	input	to	the	
mesh	model.	 Logically,	 it	 should	 be	 integrated	 into	 the	 RSM.	 This	 can	 lead	 to	 reconciliation,	
compatibility	problems,	particularly	in	natural	systems.		
	
SFWMD	has	long	recognized	the	need	for	higher	spatial	and	temporal	resolution	models	for	
particular	issues	in	both	planning	and	regulation.	MSRSM	is	an	example	of	such	a	model.	This	
integration	presents	a	challenge.		A	standard	protocol	for	obtaining	and	validating	boundary	
conditions	for	smaller	scale	models	from	the	larger	scale	RSM	must	be	developed.	Such	a	
scheme	might	set	tolerances	for	agreement	on	boundary	flows	where	heads	are	used	as	
boundary	conditions	(or	vice	versa).	

The	use	of	a	variety	of	versions	or	formulations	to	solve	different	problems	–	each	referred	to	as	
a	model	–	is	confusing.	There	should	be	ONE	model	–	with	appropriate	version	numbering	–	that	
is	used	to	solve	different	problems. 

	
Model	management/Modeling	documentation	
	
As	stated	previously,	the	RSM	is	complicated	to	run,	maintain	and	use.	At	the	same	time,	it	is	a	
key	and	accepted	tool	(as	was	well	articulated	in	the	meeting	by	state	and	federal	agencies	and	
non-profits	working	on	the	Everglades	and	South	Florida).	The	Panel	recommends:	
	

1. Users	manuals	and	complete	documentation	are	urgently	needed.	The	Panel	
understands	that	resources	are	barely	sufficient	to	keep	the	system	going.	The	Panel	
urges	the	SFWMD	to	invest	in	documentation;	this	should	be	a	priority.	

2. Ease	of	use	and	access	must	be	a	goal.	The	model	needs	a	Graphical	User	Interface.	
3. Users	should	have	access	to	documented	tools	for	the	display	of	model	output.	This	

includes	graphical	displays.	A	suite	of	such	tools	should	be	made	generally	available.	
Output	formats	should	remain	stable	for	long	periods	to	facilitate	user	development	of	
new	display	and	interpretation	tools.		

4. The	District	may	wish	to	consider	hosting	RSM	for	outside	use	on	a	server.	This	may	
greatly	simplify	maintenance	issues.	It	would	also	facilitate	agency	review	of	model	runs	
by	outside	parties.	Nevertheless,	the	inevitable	outcome	of	opening	access	will	be	
increasing	demand	for	help	and	advice.		
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5. Provision	should	be	made	for	external	access	to	SFWMD	data	bases	so	that	external	
users	can	set	up	their	own	models	

6. External	model	developers	may	create	enhancements	to	the	SFWMD.	When	providing	
the	RSM	to	outside	users	the	SFWMD	should,	to	the	extent	possible,	encourage	or	
require	that	such	enhancements	be	available	to	the	SFWMD	for	internal	use,	or	better,	
for	general	use.	This	includes	external	development	of	performance	metrics.	

7. Thought	may	be	given	to	the	formation	of	a	users’	group,	possibly	involving	licensing,	
sharing	of	development	and	of	model	use	experiences.	

8. It	is	inevitable	that	others	will	challenge	the	results	of	RSM	using	competing	models.	
Thought	should	be	given	and	guidelines	developed	on	methods	to	compare	the	results	
of	differing	models.	

9. The	District	needs	to	develop	standard	procedures	for	the	review	and	verification	of	
both	internal	and	external	runs.		

10. The	Panel	is	concerned	about	continuity	of	staffing	and	expertise.	At	the	moment	there	
is	a	cadre	of	senior	experts	that	are	irreplaceable.	Younger	people	need	to	be	brought	in	
and/or	expertise	has	to	be	developed	throughout	a	broader	community.	

11. Desktop	computer	CPUs	with	up	to	64	cores/128	threads	are	now	or	will	soon	be	
available	for	~$5K	or	less.	The	bottom	line	is	that	computational	facilities	continue	to	get	
faster	and	cheaper.	Further,	distributed	computational	cycles	are	readily	available	at	
very	affordable	prices	from	providers	“in	the	cloud”.	The	potential	for	using	such	
options	should	be	investigated	since	they	could	greatly	reduce	run	times	for	the	mesh	
portions	of	the	model.	

	
Model	and	input	error	
	

1) There	was	no	comprehensive	analysis	of	the	nature	of	overall	model	errors,	the	
difference	between	observed	and	simulated	results.	It	is	important	to	note	that	there	
are	errors	in	model	simulation	of	physical	parameters,	e.g.	flows	and	stages,	and	there	
are	errors	in	the	model	simulation	of	performance	metrics.	While	these	are	related,	they	
are	NOT	the	same,	and	both	need	to	be	analyzed.	

2) A	close	examination	of	time	series	comparisons	of	model	errors	and	scatterplots	is	likely	
to	reveal	the	existence	of	systemic	errors,	and	a	more	thorough	statistical	examination	
of	the	relationship	between	errors	and	model	input,	output	and	perhaps	most	
importantly	performance	metrics	values	may	reveal	the	existence	of	systemic	errors.	It	
is	desirable	to	have	the	relationships	between	errors	and	input,	output,	and	
performance	metrics	values	be	normally	distributed	and	homoscedastic.	If	they	are	not,	
empirical	corrections	may	be	added	to	model	output	to	correct	systemic	errors.	There	
are	many	techniques	for	making	such	adjustments	and	they	are	likely	to	improve	the	
relationship	between	presented	values	and	realistic	expectations	of	the	impact	of	
alternatives	being	evaluated.	This	should	improve	estimates	of	variance	of	results	and	
otherwise	greatly	improving	the	utility	of	model	results.	Some	references	to	techniques	
for	model	error	analysis	are	attached.		
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3) The	time	series	of	model	errors	from	calibration	and	verification	can	be	useful	as	direct	

corrections	to	model	runs.	They	can	be	added	to	model	results	as	either	innovations	
(percentages)	or	absolute	values	depending	on	the	underlying	processes,	when	the	
same	historical	drivers	are	used	in	simulation	runs.	In	other	cases,	or	where	longer	
simulations	are	needed,	time	series	of	synthetic	errors	can	be	developed	using	the	
statistics	of	the	calibration/verification	errors,	and	these	time	series	added	to	the	model	
results.	Care	must	be	taken	to	preserve	both	serial	and	spatial	correlation	of	errors	in	
the	synthetic	error	time	series.	

4) Model	inputs,	and	particularly	meteorological	inputs	are	subject	to	substantive	
deviations	from	actual	values	and	contribute	to	model	error.	It	is	useful	to	understand	
the	nature	of	these	errors	and	to	identify	systemic	errors	in	order	to	understand	and	
correct	for	remaining	sources	of	model	error.	Modifications	made	to	model	physical	
parameters	are	sometimes	made	to	reduce	model	errors	that	are	largely	due	to	errors	
in	estimation	of	model	drivers.	There	is	substantial	literature	on	methods	to	account	for	
systemic	errors	in	meteorological	data.	Use	of	these	methods	may	considerably	improve	
model	calibration.	The	methods	used	by	the	NWS	to	correct	such	errors	may	be	aimed	
squarely	at	the	middle	of	the	distribution	of	values,	where	the	SFWMD’s	interest	may	
concern	correcting	the	value	of	the	inputs	at	the	extremes.	

5) Once	adjustments	have	been	made	for	systemic	errors	and	the	implications	of	errors	in	
model	inputs	(drivers)	are	understood,	the	effect	of	the	approximations	used	in	model	
formulation	can	also	be	better	understood,	and	a	priority	scheme	for	implementing	
changes	in	model	formulation	can	be	developed.	

Use	of	the	full	unsteady	flow	equations	for	flow	in	a	horizontal	channel		

In	the	typical	case,	the	forces	acting	on	a	1-D	formulation	of	unsteady	open-channel	flow	are:	(1)	
gravity,	(2)	friction,	(3)	pressure	gradient,	and	(4)	inertia.	Significantly,	in	a	horizontal	channel	the	
gravitational	 force	 vanishes,	 while	 the	 three	 other	 forces	 remain.	 This	 renders	 the	Manning	
equation	inappropriate,	since	the	driving	force	in	this	equation	is	the	gravitational	force.	Thus,	
for	modeling	unsteady	flows	in	horizontal	channels	(the	case	of	South	Florida)	there	appears	to	
be	no	other	choice	than	to	use	the	full	Saint-Venant	equations.	A	diffusion	wave	formulation	may	
not	 suffice,	 because	 it	 neglects	 inertia.	 The	 latter	 is	 bound	 to	 play	 an	 increasing	 role	 in	 the	
momentum	balance	as	the	gravitational	force	vanishes.		

The	 need	 to	 include	 lateral	 contributions	 (seepage	 in	 and	 out	 of	 the	 control	 volume)	 in	 the	
analysis	of	wave	propagation	 in	South	Florida	applications	 remains	 to	be	 fully	 clarified.	Great	
strides	along	these	lines	have	already	been	made	by	SFWMD	scientists.	The	additional	terms	in	
the	 mass	 and	 momentum	 balance	 equations	 need	 to	 be	 carefully	 identified.	 Their	 relative	
importance	 may	 be	 determined	 following	 the	 work	 of	 Ponce	 (1982).	 (see	 Appendix	 for	
references)	
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	Dynamic	hydraulic	diffusivity	in	convection-diffusion	modeling	of	surface	runoff		

An	established	approach	 to	modeling	 flood	 flows	used	 in	RSM	 is	 that	of	Hayami	 (1951),	who	
combined	the	governing	equations	of	continuity	and	motion	(the	Saint	Venant	equations)	into	a	
second-order	 partial	 differential	 equation	 with	 discharge	Q	 as	 the	 dependent	 variable.	 This	
equation,	effectively	a	 convection-diffusion	model	of	 surface	 runoff,	has	been	widely	used	 in	
practice.	 It	 consists	of;:	 (1)	a	 rate-of-rise	 term,	 (2)	a	convective	 term,	of	 first	order,	and	 (3)	a	
diffusive	term,	of	second	order.	In	Hayami's	formulation,	the	coefficient	of	the	convective	term	
is	 the	 kinematic	 wave	 celerity	 (Seddon	 celerity);	 the	 coefficient	 of	 the	 diffusive	 term	 is	 the	
hydraulic	diffusivity	(Hayami	diffusivity).		

The	hydraulic	diffusivity	used	in	RSM	follows	the	original	Hayami	formulation	of	a	diffusion	wave,	
wherein	the	inertia	terms	(in	the	equation	of	motion)	are	neglected.	This	approximation	works	
well	for	low	Froude	number	flows.	However,	for	high	Froude	number	flows,	the	neglect	of	inertia	
proves	to	be	increasingly	unjustified.	As	shown	in	Ponce	(1991),	the	true	hydraulic	diffusivity	of	
the	 convection-diffusion	model	 of	 flood	 flows	 is	 the	dynamic	 hydraulic	 diffusivity,	which	 is	 a	
function	of	the	Vedernikov	number	(Powell,	1948).	In	fact,	for	Vedernikov	V	=	1,	all	wave	diffusion	
vanishes	and	the	 flow	 is	poised	to	develop	physical	surface	 instabilities,	 i.e.,	 the	so-called	roll	
waves.	 This	 fits	 admirably	 with	 physical	 reality,	 confirming	 the	 theoretical	 basis	 of	 the	
Vedernikov-dependent	diffusivity,	i.e.,	the	dynamic	hydraulic	diffusivity.		

We	 recommend	 that	a	dynamic	hydraulic	diffusivity	be	 incorporated	 into	all	 instances	where	
surface-water	 convection-diffusion	 is	 being	modeled	 in	RMS.	 This	 extension	provides	a	 lot	 of	
bang	for	the	buck,	since	the	structure	of	the	computation	remains	basically	the	same.	Ponce's	
formulation	clarifies	the	work	of	Dooge	and	his	associates,	as	recounted	recently	by	Nuccitelli	
and	Ponce	(2014).		

	

Numerical	Methods,	Accuracy	and	Errors	
	

Computational	efficiency	

1) Run	times	for	the	models	are	currently	undesirably,	but	perhaps	not	unavoidably,	long	
2) There	was	discussion	of	neural	net	and	other	AI	based	emulators	for	the	model,	but	

these	were	not	reviewed.	They	should	be.	
3) All	comments	on	error	analysis	made	above	apply	to	any	model	emulators	as	well.	

Errors	should	be	assessed	against	data	as	well	as	against	RSM	results.	
4) If	a	linear	programing	solver	is	used	for	the	MSE	it	may	well	be	possible	to	solve	both	

the	MSE	and	HSE	in	a	single	pass.	This	would	largely	eliminate	the	need	for	custom	
iteration	schemes,	except	when	linear	approximation	tolerances	are	exceeded.	This	
should	be	pursued	

5) Solvers	other	than	LPsolve	(the	GNU	solver	tested)	should	be	tested.	Commercial	solvers	
may	be	substantially	more	computationally	efficient.	
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The	appropriateness	of	the	TVDLF	

In	its	newest	implementation,	the	RSM	model	uses	the	Total	Variation	Diminishing	Lax-Friedrichs	
method	(TVDLF),	which	is	shown	to	be	accurate	and	stable	for	both	kinematic	and	diffusion	flows	
such	as	those	prevalent	in	Southern	Florida	(Lal	and	Toth,	2013).	The	method	uses	a	linearized	
conservative	 implicit	 formulation	of	 the	simplified	St.	Venant	equations,	 thereby	avoiding	 the	
iterative	 formulations	 that	 would	 normally	 be	 necessary	 when	 solving	 a	 nonlinear	 scheme.	
SFWMD	 scientists	 have	 extensively	 tested	 the	 method,	 with	 favorable	 results	 in	 terms	 of	
numerical	accuracy	and	runtime.		

The	success	of	the	method	in	simulating	a	wide	array	of	problems,	including	dry	channel	bed	and	
steep	bottom	slopes,	must	be	attributed	to	its	use	of	weighting	factors	to	incorporate	numerical	
diffusion	as	needed	to	control	the	instabilities	that	would	normally	appear	in	connection	with	
sharp	 (i.e.,	 nonlinear)	 changes	 in	model	 variables.	 The	panel	welcomes	 the	use	of	 the	TVDLF	
method	 and	 supports	 its	 continued	 use;	 the	 downside,	 however,	 is	 the	 increased	 level	 of	
complexity,	compared	to	more	conventional	methods.		

Stability	and	Convergence	

The	laws	of	mass	and	momentum	conservation,	which	underpin	all	physical-process	modeling	of	
unsteady	flows,	may	be	combined,	through	appropriate	linearization,	into	a	single	second-order,	
convection-diffusion	equation	(Hayami,	1951).	In	one	extreme,	when	the	diffusion	term	vanishes,	
the	equation	becomes	hyperbolic;	in	the	other	extreme,	when	the	convection	term	vanishes,	the	
equation	becomes	parabolic.		

Numerical	models	of	hyperbolic	 systems	are	subject	 to	 the	Courant	 law,	which	expresses	 the	
ratio	of	physical	celerity	(c)	to	numerical	celerity	(Δx/Δt),	also	referred	to	as	the	grid	ratio.	On	the	
other	hand,	numerical	models	of	parabolic	 systems	are	 subject	 to	what	has	 sometimes	been	
referred	to	(for	lack	of	a	better	name)	as	the	cell	Reynolds	number	law,	which	expresses	the	ratio	
of	 physical	 diffusivity	 (ν)	 to	 numerical,	 or	 grid,	 diffusivity	 [(Δx)2/Δt].	 Both	 Courant	 and	 cell	
Reynolds	numbers	 control	 the	properties	of	 numerical	models	 of	 unsteady	 flow;	 their	 values	
should	be	calculated	a	priori	(Ponce	et	al.,	2001).		

The	 properties	 of	 numerical	 schemes	 may	 be	 analyzed	 using	 various	 tools	 of	 advanced	
mathematics.	 A	 time-tested	 approach	 uses	 Fourier	 analysis	 to	 develop	 amplitude	 and	 phase	
portraits	 following	 the	pioneering	work	of	 Leendeertse	 (1967).	 Significant	 strides	along	 these	
lines	 have	 already	 been	 accomplished	 by	 SFWMD	 scientists.	 Further	 clarification	 of	 various	
concepts	appears	to	be	in	order	at	this	juncture.		

In	hyperbolic	systems,	an	assessment	of	numerical	accuracy	(i.e.,	convergence)	focuses	on	the	
spatial	resolution	L	/Δx,	where	L	is	the	predominant	wavelength	of	the	perturbation	and	Δx	is	the	
chosen	space	step.	Generally,	numerical	models	of	hyperbolic	systems	are	shown	to	be	more	
accurate	when	 the	grid	 size	 follows	 the	 characteristic	 lines,	 i.e.,	 for	 a	Courant	number	C	 =	1,	
wherein	the	physical	celerity	c	matches	the	grid	ratio	Δx/Δt.	In	theory,	selecting	a	sufficiently	high	
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spatial	 resolution,	 say,	 L	 /Δx	 ≥	 100	 and	 a	 Courant	 number	 C	 =	 1	 should	 suffice.	 In	 practice,	
however,	a	certain	scheme	may	lack	enough	numerical	diffusion	to	confront	the	high-frequency	
perturbations	 that	 are	 likely	 to	 appear	 in	 well-balanced	 schemes;	 thus,	 additional	 filtering	
(numerical	diffusion)	is	normally	required	to	render	the	system	workable.		

For	 instance,	 there	 is	a	wealth	of	accumulated	experience	on	the	numerical	properties	of	 the	
well-known	 Preissmann	 scheme,	 wherein	 stability	 and	 convergence	 are	 determined	 by	 the	
spatial	resolution	L	/Δx,	the	Courant	number	C,	and	the	weighting	factor	θ	(Ponce	et.	al.,	1978).	
The	latter	is	required	to	control	nonlinear	instabilities	which	tend	to	plague	the	computation	as	
the	scheme	approaches	second	order.	Values	of	the	weighting	factor	in	the	range	0.55	≤	θ	≤	1	
are	recommended,	with	values	near	the	lower	limit	approaching	convergence	(to	second	order)	
at	the	expense	of	stability,	and	values	near	the	upper	limit	approaching	stability	at	the	expense	
of	convergence.		

	

Choice	of	spatial	resolution	for	good	modeling	practice		

The	determination	of	the	proper	spatial	resolution	lies	at	the	crux	of	good	modeling	practice,	as	
the	experience	with	RSM	clearly	shows.	No	amount	of	time	spent	on	this	effort	is	wasted.	Our	
recommendation	 is	 to	 start	 with	 a	 target	 spatial	 resolution	 Δx	 /L	 ≥	 100.	 [The	 number	 10	 is	
definitely	 too	 low,	 and	 1000	 may	 be	 impractical].	 Calculating	 spatial	 resolution	 entails	 an	
estimation	of:	(a)	the	mean	flow	velocity,	(b)	the	wave	celerity	corresponding	to	the	prevailing	
type	 of	 friction	 and	 cross-sectional	 shape,	 and	 (c)	 the	 wavelength	 of	 the	 predominant	
perturbation.	 Values	 of	wave	 celerity	 for	 a	 comprehensive	 set	 of	 frictional	 formulations	 and	
cross-sectional	shapes	have	been	presented	by	Ponce	(2014).		

We	recommend	that	the	selected	wave	sizes	remain	within	the	diffusion	wave	range,	since	the	
dynamic	wave	range	is	very	likely	to	be	too	diffusive	to	be	of	any	practical	interest	(Lighthill	and	
Whitham,	1955).	The	dimensionless	wave	propagation	chart	of	Ponce	and	Simons	(1977)	may	be	
used	as	a	suitable	indicator	of	the	appropriate	wave	scale	required	to	nail	down	the	proper	spatial	
resolution	(see	appendix).		

	

Solution	Methods	

While	implicit	schemes	are	unconditionally	stable,	a	similar	statement	may	not	follow	for	explicit	
schemes.	This	is	certainly	the	case	for	both	surface	and	groundwater	flows.	On	this	basis,	implicit	
schemes	are	generally	preferred	over	explicit	schemes.		

It	may	be	true	that	implicit	schemes	are	not	subject	to	an	upper	limit	on	the	time	step	in	order	to	
remain	stable.	However,	 the	use	of	 time	steps	greatly	exceeding	 this	 limit	 renders	 the	model	
inaccurate	 (nonconvergent).	 Thus,	 the	use	of	 implicit	 schemes	with	Courant	 numbers	 greatly	
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exceeding	1	(C	>>	1)	must	be	viewed	with	extreme	caution,	begging	for	a	Fourier	analysis	 for	
proof	 of	 convergence.	 Furthermore,	 certain	 explicit	 schemes	 are	 not	 subject	 to	 a	 stability	
condition,	as	demonstrated	by	Ponce	et	al.	(1979)	in	connection	with	convection	modeling.		

The	tradeoffs	between	explicit	and	implicit	schemes	are,	therefore,	clear:	While	implicit	schemes	
are	more	stable,	they	require	matrix	inversion	and	the	actual	time	step	is	effectively	limited	in	
size	by	accuracy	considerations.	Explicit	schemes,	on	the	other	hand,	are	simpler	to	develop	and	
execute,	requiring	no	matrix	inversion	and	no	downstream	boundary	(Ponce	et	al.,	1979;	Ponce	
et	al.,	2001).	Viewed	in	this	light,	explicit	schemes	are	poised	to	remain	along	implicit	schemes	in	
the	tool	bag	of	the	numerical	modeler	of	unsteady	flows.		

Summary	

South	Florida	is	one	of	the	most	intensely	managed	environments	in	the	world.	The	control	of	its	
water	 resources	 dates	 back	 hundreds	 of	 years	 and	 is	 essential	 to	 the	 social,	 economic	 and	
ecological	well-being	of	 the	region.	During	our	visit	 several	constituents	 including	 federal	and	
state	 agencies,	 as	well	 as	 not	 for	 profit	 institutions	 stated	 the	 need	 of	 a	 reliable,	 stable	 and	
credible	 representation	 of	 the	 region;	 a	 model	 that	 allows	 them	 to	 explore	 management	
alternatives,	do	planning,	or	study	the	impact	of	future	climatic	conditions.	The	Panel	concludes	
that	RSM	serves	that	purpose	and	is	a	suitable	for	simulating	the	hydraulics,	hydrology,	and	the	
operations	control	needs	of	the	South	Florida	hydrologic	system.	It	builds	on	a	legacy	of	models	
customized	to	represent	the	unique	physical	and	water	management	demands	of	South	Florida.	
The	Panel	does	have	several	observations	and	recommendations	discussed	in	the	body	of	this	
report.	Some	of	the	key	conclusions	are:	

1. There	is	concern	about	continuity	of	expertise.	This	is	a	complicated	model,	very	much	
dependent	on	a	few	very	knowledgeable	individuals.	

2. There	 is	a	need	of	 investment	on	appropriate	user	 interfaces	 (like	GUIs),	manuals	and	
ways	to	facilitate	access	by	outside	users.	

3. Model	 integration	 is	 important	 and	 encouraged,	 that	 includes	 basin,	 mesh,	MSE	 and	
hydrologic	models.	

4. Model	and	input	errors	must	be	quantified	and	used	to	improve	model	results.	
5. A	diffusion	wave	formulation	may	not	suffice,	because	it	neglects	inertia.	This	should	be	

studied.	
6. A	dynamic	hydraulic	diffusivity	should	be	incorporated	into	all	instances	where	surface-

water	convection-diffusion	is	being	modeled	in	RMS.	
7. Criteria	for	determining	time	and	space	discretization	must	be	explicit	and	founded	on	

solid	theoretical	foundations.	
8. Model	complexity	should	be	in	tune	with	the	problem	at	hand.	
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Appendix	

By	Victor	M.	Ponce	

	

This	Draft	Report	contains	Panelist	Victor	M.	Ponce's	contributions	and	recommendations	after	
attending	the	South	Florida	Water	Management	District	(SFWMD)	Peer	Review	of	the	Regional	
Simulation	Model's	(RSM),	held	in	West	Palm	Beach,	Florida,	on	July	24-25,	2019.	The	specific	
focus	of	the	peer	review	is	on	identifying	strengths,	weaknesses,	and	possible	applications	of	the	
RSM	model,	with	regards	to	its	suitability	for	simulating	the	hydraulics,	hydrology,	and	operations	
control	needs	of	the	South	Florida	hydrologic	system.	This	report	is	a	contribution	to	the	Draft	
Report	to	be	prepared	by	the	Panel	based	on	input	of	its	three	members	and	discussion	thereof.		

This	review	has	concluded	that	the	methodologies	included	in	RSM	are	adequate	for	its	use	in	
South	Florida.	To	improve	and	complement	current	efforts,	the	author	recommends	that	District	
scientists	 spend	 additional	 time	 on	 the	 issues	 of	 numerical	 accuracy,	 particularly	 on	 the	
determination	of	the	applicable	Courant	and	cell	Reynolds	numbers	for	specific	model	runs.	The	
author's	experience	in	this	area	is	offered	to	serve	as	a	suitable	framework	for	the	analysis.		

	

1.		On	strategies	for	model	control	to	manage	instabilities		

All	numerical	models,	and	RSM	is	no	exception,	have	a	way	of	becoming	unstable	under	a	certain	
set	of	circumstances.	Thus,	it	seems	appropriate,	at	the	start,	to	provide	a	general	discussion	on	
strategies	for	model	control	to	manage	instabilities.	A	good	physically	based	mathematical	model	
is	 based	 on	 generally	 accepted	 partial	 differential	 equations	 describing	 the	 relevant	 physical	
processes.	 RSM	 uses	 1-D	 and	 2-D	 formulations	 of	 watershed,	 channel,	 reservoir,	 and	
groundwater	flow,	coupling	them	as	appropriate	to	better	represent	the	physical	reality	at	the	
chosen	level	of	abstraction.		

All	numerical	models	suffer	from	problems	of	stability	and	convergence.	Stability	 is	related	to	
roundoff	errors;	 convergence	 to	discretization	errors	 (O'Brien	et	al.,	1950).	A	model	 run	on	a	
computer	of	 infinite	word	 length	would	theoretically	be	 free	from	roundoff	errors;	 therefore,	
stable.	However,	such	a	computer	does	not	exist.	The	computers	in	use	today	typically	have	a	32-
bit	word	length,	that	is,	each	rational	number	is	represented	by	a	collection	of	32	zeros	(0)	and	
ones	(1),	with	an	accuracy	of	approximately	seven	(7)	significant	digits.	In	practice,	however,	this	
accuracy	 is	 not	 enough;	 in	 the	 longer	 runs,	 roundoff	 errors	 propagate	 beyond	 the	 stated	
accuracy,	eventually	rendering	the	solution	unstable.		
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Convergence,	which	is	akin	to	accuracy	(in	the	sense	of	convergence	to	the	analytical	solution),	is	
determined	by	the	size	of	the	discretization,	i.e.,	the	values	of	the	discrete	space	and	time	steps,	
which	are	chosen	by	the	person	performing	the	modeling.	In	theory,	the	steps	should	be	small	
enough	to	reduce	the	(n+1)th-order	errors	of	an	n-th	order	scheme	to	insignificant	amounts.	This	
is	normally	obtained	by	a	careful	choice	of	the	discrete	steps	in	order	to	achieve	good	spatial	and	
temporal	 resolutions.	 The	 temptation	may	 be	 to	 choose	 very	 small	 discrete	 steps;	 however,	
generally	 this	 is	 not	 the	 answer.	 Decreasing	 the	 discrete	 steps	 increases	 the	 number	 of	
computations	required	to	reach	a	solution,	thereby	increasing	the	chance	for	round-off	errors	to	
propagate,	not	to	mention	the	increased	computer	time	required	to	get	a	solution.		

In	practice,	the	control	of	numerical	instability	is	seen	to	be	a	careful	balancing	act:	How	to	build	
a	scheme	that	has	enough	numerical	diffusion	to	handle	the	high-frequency	perturbations	that	
are	responsible	for	the	instability,	while	at	the	same	time	making	sure	that	the	solution	itself	is	
not	being	substantially	affected	by	the	artificially	introduced	numerical	diffusion.	This	dilemma	is	
at	the	crux	of	all	numerical	modeling.		

The	laws	of	mass	and	momentum	conservation,	which	underpin	all	physical-process	modeling	of	
unsteady	flows,	may	be	combined,	through	appropriate	linearization,	into	a	single	second-order,	
convection-diffusion	equation	(Hayami,	1951).	In	one	extreme,	when	the	diffusion	term	vanishes,	
the	equation	becomes	hyperbolic;	in	the	other	extreme,	when	the	convection	term	vanishes,	the	
equation	becomes	parabolic.		

Numerical	models	of	hyperbolic	 systems	are	subject	 to	 the	Courant	 law,	which	expresses	 the	
ratio	of	physical	celerity	(c)	to	numerical	celerity	(Δx/Δt),	also	referred	to	as	the	grid	ratio.	On	the	
other	hand,	numerical	models	of	parabolic	 systems	are	 subject	 to	what	has	 sometimes	been	
referred	to	(for	lack	of	a	better	name)	as	the	cell	Reynolds	number	law,	which	expresses	the	ratio	
of	 physical	 diffusivity	 (ν)	 to	 numerical,	 or	 grid,	 diffusivity	 [(Δx)2/Δt].	 Both	 Courant	 and	 cell	
Reynolds	numbers	 control	 the	properties	of	 numerical	models	 of	 unsteady	 flow;	 their	 values	
should	be	calculated	a	priori	(Ponce	et	al.,	2001).		

The	 properties	 of	 numerical	 schemes	 may	 be	 analyzed	 using	 various	 tools	 of	 advanced	
mathematics.	 A	 time-tested	 approach	 uses	 Fourier	 analysis	 to	 develop	 amplitude	 and	 phase	
portraits	 following	 the	pioneering	work	of	 Leendeertse	 (1967).	 Significant	 strides	along	 these	
lines	 have	 already	 been	 accomplished	 by	 SFWMD	 scientists.	 Further	 clarification	 of	 various	
concepts	appears	to	be	in	order	at	this	juncture.		

In	hyperbolic	systems,	an	assessment	of	numerical	accuracy	(i.e.,	convergence)	focuses	on	the	
spatial	resolution	L	/Δx,	where	L	is	the	predominant	wavelength	of	the	perturbation	and	Δx	is	the	
chosen	space	step.	Generally,	numerical	models	of	hyperbolic	systems	are	shown	to	be	more	
accurate	when	 the	grid	 size	 follows	 the	 characteristic	 lines,	 i.e.,	 for	 a	Courant	number	C	 =	1,	
wherein	the	physical	celerity	c	matches	the	grid	ratio	Δx/Δt.	In	theory,	selecting	a	sufficiently	high	
spatial	 resolution,	 say,	 L	 /Δx	 ≥	 100	 and	 a	 Courant	 number	 C	 =	 1	 should	 suffice.	 In	 practice,	
however,	a	certain	scheme	may	lack	enough	numerical	diffusion	to	confront	the	high-frequency	
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perturbations	 that	 are	 likely	 to	 appear	 in	 well-balanced	 schemes;	 thus,	 additional	 filtering	
(numerical	diffusion)	is	normally	required	to	render	the	system	workable.		

For	 instance,	 there	 is	a	wealth	of	accumulated	experience	on	the	numerical	properties	of	 the	
well-known	 Preissmann	 scheme,	 wherein	 stability	 and	 convergence	 are	 determined	 by	 the	
spatial	resolution	L	/Δx,	the	Courant	number	C,	and	the	weighting	factor	θ	(Ponce	et.	al.,	1978).	
The	latter	is	required	to	control	nonlinear	instabilities	which	tend	to	plague	the	computation	as	
the	scheme	approaches	second	order.	Values	of	the	weighting	factor	in	the	range	0.55	≤	θ	≤	1	
are	recommended,	with	values	near	the	lower	limit	approaching	convergence	(to	second	order)	
at	the	expense	of	stability,	and	values	near	the	upper	limit	approaching	stability	at	the	expense	
of	convergence.		

An	excellent	example	of	the	use	of	Fourier	analysis	in	numerical	modeling	of	flood	flows	is	that	
of	the	Muskingum-Cunge	model,	a	diffusion	wave	model	that	is	based	on	the	matching	of	physical	
and	numerical	diffusivities	(Cunge,	1969).	A	review	of	the	amplitude	and	phase	portraits	of	the	
Muskingum-Cunge	model,	 including	 an	 online	 calculator,	 has	 recently	 been	 accomplished	 by	
Vuppalapati	and	Ponce	(2016).		

	

2.		On	the	appropriateness	of	the	TVDLF	model	implemented	in	RMS		

In	its	newest	implementation,	the	RSM	model	uses	the	Total	Variation	Diminishing	Lax-Friedrichs	
method	(TVDLF),	which	is	shown	to	be	accurate	and	stable	for	both	kinematic	and	diffusion	flows	
such	as	those	prevalent	in	Southern	Florida	(Lal	and	Toth,	2013).	The	method	uses	a	linearized	
conservative	 implicit	 formulation	of	 the	simplified	St.	Venant	equations,	 thereby	avoiding	 the	
iterative	 formulations	 that	 would	 normally	 be	 necessary	 when	 solving	 a	 nonlinear	 scheme.	
SFWMD	 scientists	 have	 extensively	 tested	 the	 method,	 with	 favorable	 results	 in	 terms	 of	
numerical	accuracy	and	runtime.		

The	success	of	the	method	in	simulating	a	wide	array	of	problems,	including	dry	channel	bed	and	
steep	bottom	slopes,	must	be	attributed	to	its	use	of	weighting	factors	to	incorporate	numerical	
diffusion	as	needed	to	control	the	instabilities	that	would	normally	appear	in	connection	with	
sharp	(i.e.,	nonlinear)	changes	 in	model	variables.	The	author	welcomes	the	use	of	the	TVDLF	
method	 and	 supports	 its	 continued	 use;	 the	 downside,	 however,	 is	 the	 increased	 level	 of	
complexity,	compared	to	more	conventional	methods.		

	

3.		On	the	use	of	a	dynamic	hydraulic	diffusivity	in	convection-diffusion	modeling	of	surface	
runoff		

An	established	approach	 to	modeling	 flood	 flows	used	 in	RSM	 is	 that	of	Hayami	 (1951),	who	
combined	the	governing	equations	of	continuity	and	motion	(the	Saint	Venant	equations)	into	a	
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second-order	 partial	 differential	 equation	 with	 discharge	Q	 as	 the	 dependent	 variable.	 This	
equation,	effectively	a	 convection-diffusion	model	of	 surface	 runoff,	has	been	widely	used	 in	
practice.	 It	 consists	 of;	 (1)	 a	 rate-of-rise	 term,	 (2)	 a	 convective	 term,	of	 first	 order,	 and	 (3)	 a	
diffusive	term,	of	second	order.	In	Hayami's	formulation,	the	coefficient	of	the	convective	term	
is	 the	 kinematic	 wave	 celerity	 (Seddon	 celerity);	 the	 coefficient	 of	 the	 diffusive	 term	 is	 the	
hydraulic	diffusivity	(Hayami	diffusivity).		

The	hydraulic	diffusivity	used	in	RSM	follows	the	original	Hayami	formulation	of	a	diffusion	wave,	
wherein	the	inertia	terms	(in	the	equation	of	motion)	are	neglected.	This	approximation	works	
well	for	low	Froude	number	flows.	However,	for	high	Froude	number	flows,	the	neglect	of	inertia	
proves	to	be	increasingly	unjustified.	As	shown	in	Ponce	(1991),	the	true	hydraulic	diffusivity	of	
the	 convection-diffusion	model	 of	 flood	 flows	 is	 the	dynamic	 hydraulic	 diffusivity,	which	 is	 a	
function	of	the	Vedernikov	number	(Powell,	1948).	In	fact,	for	Vedernikov	V	=	1,	all	wave	diffusion	
vanishes	and	the	 flow	 is	poised	to	develop	physical	surface	 instabilities,	 i.e.,	 the	so-called	roll	
waves.	 This	 fits	 admirably	 with	 physical	 reality,	 confirming	 the	 theoretical	 basis	 of	 the	
Vedernikov-dependent	diffusivity,	i.e.,	the	dynamic	hydraulic	diffusivity.		

We	 recommend	 that	a	dynamic	hydraulic	diffusivity	be	 incorporated	 into	all	 instances	where	
surface-water	 convection-diffusion	 is	 being	modeled	 in	RMS.	 This	 extension	provides	a	 lot	 of	
bang	for	the	buck,	since	the	structure	of	the	computation	remains	basically	the	same.	Ponce's	
formulation	clarifies	the	work	of	Dooge	and	his	associates,	as	recounted	recently	by	Nuccitelli	
and	Ponce	(2014).		

	

4.		On	the	choice	of	spatial	resolution	for	good	modeling	practice		

The	determination	of	the	proper	spatial	resolution	lies	at	the	crux	of	good	modeling	practice,	as	
the	experience	with	RSM	clearly	shows.	No	amount	of	time	spent	on	this	effort	is	wasted.	Our	
recommendation	 is	 to	 start	 with	 a	 target	 spatial	 resolution	 Δx	 /L	 ≥	 100.	 [The	 number	 10	 is	
definitely	 too	 low,	 and	 1000	 may	 be	 impractical].	 Calculating	 spatial	 resolution	 entails	 an	
estimation	of:	(a)	the	mean	flow	velocity,	(b)	the	wave	celerity	corresponding	to	the	prevailing	
type	 of	 friction	 and	 cross-sectional	 shape,	 and	 (c)	 the	 wavelength	 of	 the	 predominant	
perturbation.	 Values	 of	wave	 celerity	 for	 a	 comprehensive	 set	 of	 frictional	 formulations	 and	
cross-sectional	shapes	have	been	presented	by	Ponce	(2014).		

We	recommend	that	the	selected	wave	sizes	remain	within	the	diffusion	wave	range,	since	the	
dynamic	wave	range	is	very	likely	to	be	too	diffusive	to	be	of	any	practical	interest	(Lighthill	and	
Whitham,	1955).	The	dimensionless	wave	propagation	chart	of	Ponce	and	Simons	(1977)	(Fig.	1)	
may	be	used	as	a	 suitable	 indicator	of	 the	appropriate	wave	 scale	 required	 to	nail	down	 the	
proper	spatial	resolution.	Figure	1	 is	global	and	based	on	theory;	therefore,	 it	 is	preferable	to	
alternative	approaches	containing	empirical	components.		
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Fig. 1  Dimensionless relative wave celerity vs dimensionless wavenumber in open-channel flow.  

	

5.		On	the	comparative	advantages	of	implicit	vs	explicit	schemes		

The	choice	between	explicit	and	implicit	schemes	continues	to	haunt	numerical	modelers.	While	
implicit	 schemes	 are	 unconditionally	 stable,	 a	 similar	 statement	 may	 not	 follow	 for	 explicit	
schemes.	This	is	certainly	the	case	for	both	surface	and	groundwater	flows.	On	this	basis,	implicit	
schemes	are	generally	preferred	over	explicit	 schemes,	but	 the	complete	story	remains	 to	be	
told.		

It	may	be	true	that	implicit	schemes	are	not	subject	to	an	upper	limit	on	the	time	step	in	order	to	
remain	stable.	However,	 the	use	of	 time	steps	greatly	exceeding	 this	 limit	 renders	 the	model	
inaccurate	 (nonconvergent).	 Thus,	 the	use	of	 implicit	 schemes	with	Courant	 numbers	 greatly	
exceeding	1	(C	>>	1)	must	be	viewed	with	extreme	caution,	begging	for	a	Fourier	analysis	 for	
proof	 of	 convergence.	 Furthermore,	 certain	 explicit	 schemes	 are	 not	 subject	 to	 a	 stability	
condition,	as	demonstrated	by	Ponce	et	al.	(1979)	in	connection	with	convection	modeling.		

The	tradeoffs	between	explicit	and	implicit	schemes	are,	therefore,	clear:	While	implicit	schemes	
are	more	stable,	they	require	matrix	inversion	and	the	actual	time	step	is	effectively	limited	in	
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size	by	accuracy	considerations.	Explicit	schemes,	on	the	other	hand,	are	simpler	to	develop	and	
execute,	requiring	no	matrix	inversion	and	no	downstream	boundary	(Ponce	et	al.,	1979;	Ponce	
et	al.,	2001).	Viewed	in	this	light,	explicit	schemes	are	poised	to	remain	along	implicit	schemes	in	
the	tool	bag	of	the	numerical	modeler	of	unsteady	flows.		

	

6.		On	the	need	to	use	the	full	unsteady	flow	equations	for	flow	in	a	horizontal	channel		

In	the	typical	case,	the	forces	acting	on	a	1-D	formulation	of	unsteady	open-channel	flow	are:	(1)	
gravity,	(2)	friction,	(3)	pressure	gradient,	and	(4)	inertia.	Significantly,	in	a	horizontal	channel	the	
gravitational	 force	 vanishes,	 while	 the	 three	 other	 forces	 remain.	 This	 renders	 the	Manning	
equation	inapproriate,	since	the	driving	force	in	this	equation	is	the	gravitational	force.	Thus,	for	
modeling	unsteady	flows	in	horizontal	channels	(the	case	of	South	Florida)	there	appears	to	be	
no	other	choice	than	to	use	the	full	Saint-Venant	equations.	A	diffusion	wave	formulation	will	not	
suffice,	because	it	neglects	inertia.	The	latter	is	bound	to	play	an	increasing	role	in	the	momentum	
balance	as	the	gravitational	force	vanishes.		

The	 need	 to	 include	 lateral	 contributions	 (seepage	 in	 and	 out	 of	 the	 control	 volume)	 in	 the	
analysis	of	wave	propagation	 in	South	Florida	applications	 remains	 to	be	 fully	 clarified.	Great	
strides	along	these	lines	have	already	been	made	by	SFWMD	scientists.	The	additional	terms	in	
the	 mass	 and	 momentum	 balance	 equations	 need	 to	 be	 carefully	 identified.	 Their	 relative	
importance	may	be	determined	following	the	work	of	Ponce	(1982).		

	

7.		On	the	need	for	RSM	model	version	numbers		

The	term	"RSM	model"	is	being	currently	used	to	describe	any	and	all	activities	under	the	RSM	
modeling	framework.	This	explains	the	District's	(SFWMD)	reluctance	to	engage	in	explicit	model	
version	numbers	to	describe	what	amounts	to	activities	of	varied	scope	and	in	many	areas.	The	
review	failed	to	shed	additional	light	on	this	important	issue.	We	do	not	have	a	clear	answer	to	
solve	this	problem,	namely,	the	inability	of	RSM	to	connect	the	various	modeling	activities	and	
individual	projects	in	time	and	space.	We	encourage	SFWMD	scientists	to	continue	to	focus	on	
resolving	this	issue.		

	

8.		On	the	need	for	consistency	in	model	documentation		

We	recommend	that	SFWMD	consider	a	thorough	and	full	documentation	of	the	RSM	model	via	
a	technically	edited	User	Manual,	accompanied	by	a	Reference	Manual,	as	a	way	to	ensure	that	
potential	users	of	the	model	will	be	able	to	use	it	in	the	future.	Background	material	would	consist	
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of	 relevant	published	papers	 listed	 in	 the	bibliography	and	 included	 therein	with	hot	 links	 to	
online	pdf	files.		

As	 an	 alternative,	 one	 certainly	 requiring	 fewer	 resources,	 the	 District	 could	 sponsor	 a	
publications	series	to	be	entitled,	for	example,	RSM	Tecnical	Monographs.	For	consistency,	each	
monograph	would	follow	the	same	(or	similar)	format	and	describe	in	detail	a	specific	portion	of	
the	 model,	 using	 graphics	 and	 color	 as	 appropriate.	 This	 approach	 has	 the	 advantage	 that	
progress	is	not	defined	in	terms	of	project	completion.		

	

9.		Other	miscellaneous	recommendations		

We	offer	the	following	miscellaneous	recommendations:		

a. The	2-D	momentum	equations	originate	in	the	3-D	Navier-Stokes	equations,	and,	as	such,	
are	technically	not	closed	(Flokstra,	1976;	1977).	Some	sort	of	surrogate	for	the	missing	
effective	stresses	appears	 in	order	(Kuipers	and	Vreugdenhil,	1973).	This	 is	an	obscure	
subject,	perhaps	deserving	of	more	attention	than	that	given	so	far.		

b. Caution	is	recommended	when	using	a	2-D	formulation	of	a	diffusion	wave,	wherein	the	
inertia	terms	are	neglected.	Neglecting	inertia	is	bound	to	eliminate	physical	circulation	
(Ponce	and	Yabusaki,	1981).	However,	it	may	be	a	reasonable	assumption	in	the	largely	
convective	2-D	flows	that	prevail	in	South	Florida.		

c. The	Muskingum-Cunge	model	of	1-D	flood	flows,	effectively	a	diffusion	wave	model,	has	
been	analytically	verified	by	Ponce	et	al.	 (1996).	We	suggest	 that	 the	District	consider	
including	this	verification	test	in	their	set	of	cases	for	model	verification.		
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