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ABSTRACT: A criterion for the time of opening of irrigation canal gates is developed based on hydrodynamic
principles. An analytical model of unsteady open-channel flow is used to calculate the attenuation of small-
amplitude surface transients. Wave attenuation is expressed in terms of a dimensionless parameter containing
both steady and unsteady components. The developed criterion is shown to be in agreement with actual field
practice in the Imperial Valley, Calif.
INTRODUCTION

Irrigation canal gates should be opened or closed at suffi-
ciently slow speeds; otherwise, surface transients may develop
that could negatively impair the operation of the canal. We use
an analytical model of unsteady open-channel flow to develop
a criterion for the time of opening of an irrigation canal gate.
The criterion is based on the fact that in typical canal situa-
tions, the longer the wavelength of the disturbance, the faster
its attenuation rate is. A practical criterion is developed by first
converting wavelength into wave period and then linking the
wave period with the time of opening.

CRITERION FOR TIME OPENING

Ponce and Simons’ (1977) analytical model of unsteady
open-channel flow can be used to calculate attenuation rates
of small-amplitude surface transients across the entire spec-
trum of shallow water waves, from kinematic to gravity waves.
Specifically, we focus on the dimensionless wave numbers
close to the border between dynamic and gravity waves, herein
referred to as border dimensionless wave numbers.

To increase the usefulness of the analysis, we express the
dimensionless wave number s* as dimensionless wave period
t* (Ponce et al. 1978). Border dimensionless wave numbers
and corresponding dimensionless wave periods are strongly
dependent on the steady-flow Froude number (Ponce and Si-
mons 1977). To reduce this dependence, we normalize the di-
mensionless wave period by dividing it by the square of the
Froude number—a technique that emulates Woolhiser and
Liggett’s (1967) kinematic flow number. The normalized di-
mensionless wave period is

2p
t = (1)2** c s F0* *

For a given Froude number, we determine the normalized
dimensionless wave period that will produce a 0.1 amplitude
ratio (i.e., 90% wave attenuation) after one period of propa-
gation. This is referred to as threshold normalized dimension-
less wave period The computational algorithm is de-t9 .**
scribed as follows:

1. For a given Froude number F0 and dimensionless wave
number s*, calculate the dimensionless celerity c* and
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TABLE 1. Threshold Normalized Dimensionless Wave Period
versus Steady-Flow Froude Number F0t9**

F0

(1)
t9**
(2)

0.1 2.43
0.2 2.59
0.3 2.79
0.4 3.04
0.5 3.43

logarithmic decrement d using (10) and (11) of Appendix
I, respectively, and the normalized dimensionless wave
period t** using (1).

2. Calculate the amplitude ratio ed (Ponce and Simons
1977).

3. If the amplitude ratio is greater/smaller than 0.1, choose
a smaller/greater dimensionless wave number, and return
to Step 1; otherwise, the normalized dimensionless wave
period calculated in Step 1 is the threshold value t9 .**

4. Select another Froude number, and return to Step 1. Stop
when has been determined for all Froude numbers.t9**

The dimensionless wave period is t* = (Tu0S0) /d0, in which
T = wave period; u0 = steady-flow mean velocity; d0 = steady-
flow depth; and S0 = channel slope (Ponce et al. 1978); and
the steady-flow Froude number is F0 = u0 /(gd0)

1/2, in which g
= gravitational acceleration (Chow 1959). Thus, the normal-
ized dimensionless wave period reduces to

gTS0
t = (2)** u0

Table 1 shows calculated values of for selected Froudet9**
numbers in the range of 0.1–0.5. Froude numbers substantially
<0.1 were deemed impractical because of the possibility of
excessive sedimentation. Froude numbers >0.5 were not con-
sidered further because of decreased attenuation rates and as-
sociated potential for surface instabilities. Table 1 shows that

varies slightly with Froude number; however, the ranget9**
of variation is shown to be much smaller than that of the
border dimensionless wave numbers (Ponce and Simons
1977).

TIME OF OPENING OF CANAL GATE

The developed criterion can be summarized as follows: For
a given steady-flow Froude number, the normalized dimen-
sionless wave period [(2)] should be greater than or equal to
the respective threshold value t9**

gTS0
t = $ t9 (3)** **u0

The wave period T is associated with the period of the main
surface disturbance. As a first approximation, we assumed the
time of opening T0 to be equal to half of the wave period.
Therefore
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t9 u0**T $ (4)0 2gS0

In terms of the Manning friction and SI units, (4) can be
expressed as follows:

4/30.051t9 R0**T $ (5)0 2n u0

in which n = Manning coefficient (Chow 1959).
In terms of Manning friction and U.S. customary units, (4)

can be expressed as follows:

4/30.0343t9 R0**T $ (6)0 2n u0

APPLICATION TO IMPERIAL VALLEY CANAL DATA

The developed criterion [(4)–(6)] is applied to two typical
irrigation canal designs in the Imperial Valley, Calif. The hy-
draulic data were supplied by the Imperial Irrigation District’s
Engineering Division in Brawley, Imperial County. Canal 1 is
small, with a 2-ft bottom width; Canal 2 is medium-sized, with
a 4-ft bottom width. The hydraulic characteristics are shown
in Table 2, together with the time of opening calculated using
(5) or (6). Also shown is the actual time of opening, based on
two rates-of-rise recommended by the manufacturers: 15.24
cm/min (6 in./min) and 30.48 cm/min (12 in./min). It is seen
that actual and calculated times-of-opening are in reasonable
agreement, as the theoretically calculated value lies between
the two rates established by practice. Accordingly, (4) or its
surrogate equations [(5) and (6)], is proposed as an indicator
of the time of opening of irrigation canal gates in field situa-
tions of comparable hydraulics and geometry. The proposed
methodology is applicable provided the transients generated
by the gate operation are of small amplitude.

APPENDIX I. EQUATIONS FOR WAVE CELERITY
AND LOGARITHMIC DECREMENT (PONCE AND
SIMONS 1977)

1
B = (7)2s F0*

1 2A = 2 B (8)2F0

2 2 1/2C = (A 1 B ) (9)
1/2

C 1 A
c = 1 1 (10)S D* 2

1/2
C 2 A

B 2 S D2
d = 22p (11)1/2

C 1 A
1 1U S D U2
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TABLE 2. Hydraulic Characteristics and Time of Opening T0

Characteristic and
time of opening

(1)

Canal Type (size)

1 (Small)
(2)

2 (Medium)
(3)

Bottom width [m (ft)] 0.61 (2) 1.22 (4)
Side slope z 1.25 1.5
Manning n 0.015 0.015
Channel slope 0.0004 0.0004
Design flow depth [m (ft)] 0.97 (3.17) 0.97 (3.17)
Flow area [m2 (ft2)] 1.75 (18.87) 2.57 (27.71)
Wetted perimeter [m (ft)] 3.7 (12.14) 4.7 (15.42)
Top width [m (ft)] 3.02 (9.92) 4.1 (13.5)
Hydraulic radius [m (ft)] 0.47 (1.55) 0.55 (1.80)
Hydraulic depth [m (ft)] 0.58 (1.9) 0.63 (2.05)
Flow velocity [m/s (fps)] 0.81 (2.65) 0.89 (2.93)
Design discharge [m3/s (cfs)] 1.42 (50) 2.29 (81)
Froude number F0 0.34 0.36

(interpolated from Table 1)t9** 2.89 2.94

T0 (s) calculated with (4) or (6) 298 335
T0 (s) at rate of 6 in./min 380 380
T0 (s) at rate of 12 in./min 190 190
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APPENDIX III. NOTATION

The following symbols are used in this paper:

A = parameter defined by Eq. (8);
B = parameter defined by Eq. (7);
C = parameter defined by Eq. (9);

c* = dimensionless celerity [Eq. (10)];
d0 = steady-flow depth;
F0 = steady-flow Froude number;
g = gravitational acceleration;
n = Manning friction coefficient;

R0 = steady-flow hydraulic radius;
S0 = channel slope;
T = wave period;

T0 = time of opening;
u0 = steady-flow mean velocity;
z = canal side slope (z horizontal to 1 vertical);
d = logarithmic decrement [Eq. (11)];

s* = dimensionless wave number;
t* = dimensionless wave period;

t** = normalized dimensionless wave period [Eqs. (1) or (2)];
and

t9** = threshold normalized dimensionless wave period.


