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Abstract:  The Initial Abstraction ratio (Ia/S, or λ) in the Curve Number (CN) method was 
assumed in its original development to have a value of 0.20. Using event rainfall-runoff data 
from several hundred plots this assumption is investigated, and λ values determined by two 
different methods. Results indicate a λ value of about 0.05 gives a better fit to the data and would 
be more appropriate for use in runoff calculations. The effects of this change are shown in terms 
of calculated runoff depth and hydrograph peaks, CN definition, and in soil moisture accounting. 
The effect of using λ=0.05 in place of the customary 0.20 is felt mainly in calculations that 
involve either lower rainfall depths or lower CNs. !

INTRODUCTION !
Originally developed by the Soil Conservation Service (SCS, now Natural Resources 
Conservation Service or NRCS) in the 1950s for internal use, the Curve Number method for 
estimating direct runoff from rainstorms is now widely used in engineering design, post- event 
appraisals, and environmental impact estimation. Background for this is found in the NRCS 
document National Engineering a Handbook, Section 4, “Hydrology”, or “NEH-4”  (SCS, 1985).    
The general runoff equation is 
  
 Q = (P-Ia)2/(P-Ia+S)   for P ≥Ia   (1a) 
            Q = 0      for P ≤ Ia   (1b) 

Where Q is the direct runoff depth, P is the event rainfall depth, Ia is an “initial abstraction” or 
event rainfall required for the initiation of runoff, and S is a site storage index defined as the 
maximum possible difference between P and Q as P→∞.  P- Ia is also called “effective rainfall”, 
or Pe. !
All have units of length, and the equation is dimensionally homogeneous.  The storage index S, 
which has the limiting values of 0 and ∞, is transformed to the more intuitive “Curve Number” 
by the equation CN=1000/(10+S), where S is in inches.  CN, which is dimensionless, may take 
values from 0 to 100, is an index of the land condition as indicated by soils, cover, land use, and 
(perhaps) prior rainfall. !

!  1



Though the developmental history and documentation is obscure, the relationship between Ia and 
S was fixed at Ia = 0.2S. Inserting that value into equation 1 gives  
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Q = (P-0.2S)2/(P+0.8S)  P≥0.2S    (2a) 
 Q = 0      P≤0.2S    (2b) !
The goal here is to examine the data-supported values of the Ia/S ratio, called λ (“lambda”), and 
suggest accommodations for updating its role. !

METHODS !
Two techniques, Event Analysis and Model Fitting, were used for determining Ia/S from field 
data sets. These are described in the following: !
Event Analysis. Here, concurrent synchronized break-point records of both rainfall and runoff 
depth are required.  The event rainfall depth recorded when the direct runoff hydrograph begins 
is taken as Ia. Knowing the total event rainfall P and the direct runoff Q, equation 1a is solved for 
S, and the ratio simply taken Ia/S=λ.  Here each event gives a separate value of λ, and the 
median for a large number of events is taken as the representative watershed value. This 
procedure is portrayed in the Figure 1. 
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 Figure 1 Event Analysis Method  !
General Model Fitting: Here the value of λ is simply determined by iterative least squares 
procedure fitting for both λ and S of the general equation.   !

Q = (P-λS)2/(P+(1-λ)S)  for P≥λS   (3a) 
            Q = 0     for P≤λS   (3b) !!

The objective of the fitting is to find the values of λ and S such that !
 Σ{Q - [(P-λS)2/(P+(1-λ)S)]}2      (4) !
is a minimum. Here each P:Q data set gives only one value of λ. An illustration of such fitting is 
given in Figure 2.  
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Figure2: Model Fitting by least squares for WS26030 located at Coshocton, OH with a drainage 
area of 303 acres. For the natural data (squares): S = 4.0974 inches, CN = 70.8, λ = 0.0179, R2 = 
50.50%, and SE = 0.32 inch. For the ordered data (triangles): S = 2.0943 inches, CN = 82.6, λ = 
0.1364, R2 = 99.17%, and SE = 0.0372 inches. !
In each of the above two methods, only “larger” storms were used.  This was done to avoid the 
biasing effects of small storms towards high Curve Numbers.  With Event Analysis, only events 
with Pe = P-λS ≥1 inch were used.  With Model Fitting, only events with P ≥1 inch were used. 
As shall be seen, found values of Ia were often quite small, so that this difference between the 
two techniques was slight. For statistical analysis, only watersheds with more than 20 events 
with P ≥ 1 inch or Pe ≥ 1 inch were used. !
In addition, for the model fitting determinations, both “natural” and “ordered” data sets were 
used. Natural data pairs the P and Q as they naturally occurred in time, and thus displays 
considerable variety in runoff with rainfall.  Ordered data matches (usually) unnatural rank-
ordered P and Q values, so that each has approximately the same return period.  This is in 
keeping with a major application of the method, which in design work at least - matches the 
frequency of the rainfall with the frequency of the runoff. For example, the 100-year rainfall is 
assumed to produce the 100-year runoff. !

DATA SETS !
Rainfall-runoff data from 307 watersheds or plots were used, originating from USDA-
Agricultural Research Service, US Forest Service, US Geological Survey, and New Mexico State 
University.  It covered 23 states, mainly in the east, midwest, and south of the United State. 
There was no data from the northwestern 1/3 of the country, from roughly California to 
Minnesota. A total of 28,301 events were available that met the rainfall depth (P and Pe) criteria. 
For event analysis, only ARS data was applicable, insofar as it alone contained the needed 
detailed in-storm break-point information. All others were only rainfall and runoff depths P and 
Q.   This is summarized in Table 1. !

Table 1. Data sets and sources 
----------------------------------------------------------------------------------------- 
Data source        # Watersheds (w)   Method used 

     or plots (p) 
----------------------------------------------------------------------------------------- 
ARS    134 (w) Event Analysis, Model Fitting 
USLE (ARS)   137 (p)   Model Fitting 
USFS       26 (w)   Model Fitting 
Jornada (NMSU)      6 (p)   Model Fitting 
USGS        4 (w)  Model Fitting 
----------------------------------------------------------------------------------------- 
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These 307 watersheds all had 20 or more events which met the storm size criteria. The ARS data 
is available from Web site” ftp://hydrolab.arsusda.gov/pub/arswater/. The “USLE” plot data had 
been used in the development of the Universal Soil Loss Equation, and was downloaded from the 
web site: http://topsoil.nserl.purdue.edu/usle/. Forest Service data was in large part supplied in 
reduced form to the author (RHH) by Dr J.D. Hewlett of the University of Georgia, who used it 
in an earlier paper (Hewlett, et al., 1977; Hewlett and Fortson, 1984).  The Jornada plot data, 
from site north of Las Cruces NM, was supplied by Dr T.J. Ward, now at the University of New 
Mexico. It is described in Hawkins and Ward (1998). The USGS data was supplied from local 
sources for a number of urban and urbanizing watersheds in the Tucson area.  !

RESULTS !
In general, the results showed that λ is not a constant from storm to storm, or watershed to 
watershed, and that the assumption of λ=0.20 is unusually high.  !
Event Analysis: Found Ia/S ratios varied greatly between storms within watersheds, and also 
between the 134 watersheds. An example of the array of λ found for events in a single watershed 
is given in Figure 3.  For each watershed the median λ was used to describe λ.  These median 
values also varied, and their distribution is shown in Figure 4.  The general findings are included 
in Table 2.    Values of the found (median) λ varied  !!
from 0.0005 to 0.4910, with a median of 0.0476.  There was a distinct negative skew, or a crowd 
of smaller values. Over 90% were less than 0.2. 

Figure 3: An example of the array of λ found by event analysis for watershed 26030  
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Figure 4  Cumulative frequency distribution of λ values from Event Analysis method  !!!!
Table 2. Summary results of λ value for ARS watersheds (n = 134) 

!

Event Analysis Model Fitting(natural) Model Fiting(ordered)
Min 0.0005 0.0000 0.000

Median 0.0476 0.0001 0.0736

Mean 0.0701 0.0555 0.1491

Max 0.4910 0.5766 0.9682

STDV 0.0812 0.0983 0.2001

Skewness 2.5899 2.8364 1.8725

% ≤0.20 93.7 93.3 72
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Model Fitting. As described previously, both natural and ordered data sets were fitted to the 
general runoff equation by least squares to determine Ia and S.  Results were more varied than 
with Event Analysis, although this may be explained with the much larger sample size (N=307).  
For natural data, the λ range was from 0 to 0.996, with a median of 0, and for ordered data, the λ 
range was form 0 to 0.9793 with a median of 0.0618. A summary of these results is given in 
Table 3. Figure 5 shows the distribution of findings. !
Table  3. Summary Results of  λ values from model fitting  

!!
APPLICATIONS !

From the above results, it is obvious that a more appropriate “rounded” value of Ia/S would be in 
the vicinity of 0.05. Using this value the runoff equation is adjusted, for which a new set of CNs 
based on λ=0.05 must be determined 
  
Runoff equation: Using Ia/S=0.05 the runoff equation becomes !
  Q = (P-0.05S)2/(P+0.95S)   P≥0.05S  (5a) 
 Q = 0      P≤0.05S  (5b) !

Natural Data Ordered Data
N Total 

Event
Max Mean Median Min Max Mean Median Min

ARS 134 12499 0.5766 0.0555 0.0001 0 0.9682 0.1491 0.0736 0

USLE 137 11140 0.996 0.0997 0 0 0.9266 0.1581 0.061 0

Others 36 4392 0.4727 0.04 0 0 0.9793 0.0992 0.0044 0

Total 307 28031 0.996 0.0734 0 0 0.9793 0.1472 0.0618 0
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However, the S values in the above equation are not the same as previously used assuming Ia/
S=0.20.  They are defined on a system of Ia/S=λ=0.05. 

Figure 5 The distribution of λ values from different data sets !
Equivalent CN: Based on the above experiences with λ the data was fitted by least squares to 
the CN equation for each case: that is, for λ = 0.05 and for the traditional value of λ = 0.20. The 
latter is the basis for existing CN Tables.  In 252 of the 307 cases (approximately 5 out of 6) the 
0.05 fitting produced a higher r2 and lower SE.  !
The relationships found between the values of S0.05 and S0.20 were, for natural and ordered data 
respectively: !
 S0.05=1.344S 0.20 1.149   r2=99.38%   (6) 

S0.05=1.316S 0.20 1.164   r2=99.44%   (7) !
Rounded consensus values of these two almost-identical findings condense to  !
 S0.05=1.33S0.201.15       (8) !
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Preserving the basic definition of CN = 1000/(10+S), the above relationship permits conversion 
from the 0.20-based CNs to 0.05-based CNs. Making the substitutions and simplifying gives !
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!
                                             100    
 CN0.05 =   ------------------------------------    (9) 
                             1.879[100/CN0.20 –1]1.15  + 1 !
Consideration of equation 8 shows that S0.05=S0.20 at 0.148 inch, or CN0.20≈98.5.  They are also 
equal at S=0, or CN=100. At these seldom-encountered levels we suggest they be considered 
equal.  Table 4 gives the CN0.05 corresponding to current values of CN0.20, taken from equation 9, 
or “Conjugate” Curve Numbers !

Table 4.  Conjugate Curve Numbers and Pcrit 
--------------------------------------------------------------------- 
 CN0.20           S0.20(in)       CN0.05             S0.05(in)       Pcrit (in) 

--------------------------------------------------------------------- 
                 100.00    0.000   100.00     0.000    ----- 
                  95.00    0.526    94.02     0.636     2.44 

90.00    1.111    86.95     1.501     1.72 
85.00    1.765    79.64     2.556     1.95 
80.00    2.500    72.39     3.815     2.27 
75.00    3.333    65.31     5.311     2.63 
70.00    4.286    58.51     7.091     3.05 
65.00    5.385    52.03     9.219     4.51 
60.00    6.667    45.90    11.785     4.04 
55.00    8.182    40.14    14.915     4.64 
50.00   10.000    34.74    18.787     5.35 
45.00   12.222    29.71    23.663     6.15 
40.00   15.000    25.03    29.947   7.13 

                  35.00   18.571    20.71    38.285     8.35 
30.00   23.333    16.73    49.777     9.92 
25.00   30.000    13.08    66.457    12.02 
20.00   40.000     9.75    92.517    15.04 
15.00   56.667     6.75   138.095    19.81 
10.00   90.000     4.08   235.088    ----- 

                   5.00  190.000     1.77   555.160    ----- 
----------------------------------------------- !!

Comparisons: How does the modification of Ia/S affect calculated values of runoff?   First, by 
equating the runoff equations using 0.05 and 0.20 and making the transformation of CNs using  
equations 8 or 9, the rainfall depth corresponding to equal runoffs for conjugate CNs can be 
determined.  This rainfall is shown as Pcrit in Table 4.  There is no closed solution:  Pcrit was 
determined numerically.  For P greater than Pcrit use of Ia/S=0.2 will result in higher calculated 
runoffs. For lesser P values, a higher runoff  will be found using Ia/S=0.05.    !
Second: Figure 6 shows rainfall-runoff plots over a range of rainfalls and conjugate CN values.  
Pcrit is the locus of the crossing points.  As can be seen, the conjugate curves are similar at a wide 
range of frequently-encountered values of P and CN.  However, as shown in Figure 7 relative 
differences are substantially different in cases of lower rainfalls and lower CNs.  !
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 Figure 6.  Rainfall and runoff for selected conjugate CNs over a range of rainfalls.  
 

 Figure 7.  Relative differences in runoff using λ=0.05, taken from Figure 6. 

!  11

Different CN Runoff Modelling

0

2

4

6

8

10

0 2 4 6 8 10

Event Rainfall P (inches)

E
ve

nt
 R

un
of

f Q
 (

in
ch

es
)

CN0.2 = 90

CN0.05 = 86.95

CN0.2 = 75

CN0.05 = 65.31 

CN0.2= 50

CN0.05 = 34.74 

1 to 1 line

Runoff Difference Change from CN0.2 to CN0.05 with Rainfall 

-20

-10

0

10

20

30

40

50

0 2 4 6 8 10 12

Event Rainfall P (inches)

D
iff

er
en

ce
 %

   CN0.2 = 50CN0.2 = 75

CN0.2 = 90



!

!  12



Third, in modeling hydrographs similar differences are seen.  An example is shown in Figures 8 
and 9.  Similar hydrographs, peaks, and timing result for the higher CNs, but distinct differences 
are shown with the lower CN.  Figure 9 shows highlights the differences for the CN0.20=50 
example. Using λ=0.05 calculates a smaller Ia, giving direct runoff earlier in the event. Here this 
leads to a peak about 60% increase in peak flow.    
  Figure 8.  Comparative hydrographs for conjugate CNs . 
  
This low CN-small storm scenario will be important in small storms and lower CNs.  This 
situation characterizes forested watersheds, especially area of modest return period storms depths 

(e.g., large portions of the interior west). This condition would also prevail in continuous 
modeling scheme, which consider all rainfalls – usually on a daily basis – regardless of size. 
Differences also exist at higher rainfall extremes, but have not been evaluated here. The major 
effect seems to be at lower CNs at lower rainfalls, or in general at low P/S situations.  !!
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Figure 9.  Comparative hydrographs from Figure 7 for the case of CN=50. ! !
CONCLUSIONS !

Ia/S: As determined by two separate methods, Ia/S (or λ) of 0.05 fits observed rainfall-runoff 
data much better than does the handbook value of 0.20. !
Runoff Equation: With λ=0.05, the runoff equation becomes !

 Q =  (P-0.05S0.05)2/(P+0.95S0.05)  P ≥ 0.05S0.05 
 Q = 0     P ≤ 0.05S0.05 !

Change of CN: Altering λ requires a change of handbook CNs.  That is, if λ is changed, 
 a different CN must be used. The relationship is  !

S0.05 = 1.33S0.201.15 

!
(where S is in inches) relates the two conditions. It was determined from data from 307 
watersheds. New handbook CN tables for λ=Ia/S=0.05 might be constructed using this 
relationship. !
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Differences:   The most obvious differences in runoff modeling are at lower CNs and lower 
rainfalls, or in general at low P/S situations.  This would prevail for low CN watersheds, more 
frequently occurring rainstorm depths, and for climates where the more modest design return 
period rainfalls are found. !
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