
MODELING LOOPED RATINGS IN MUSKINGUM-CUNGE ROUTING

By Victor M. Ponce1 and Adolph Lugo,2 Members, ASCE

ABSTRACT: The Muskingum-Cunge flood routing model is extended to the realm of looped ratings. This is
accomplished by reformulating the conventional four-point model to use the local water surface slope and the
Vedernikov number in the expression for hydraulic diffusivity. The developed model was successful in generating
looped ratings under a wide range of kinematic/diffusive unsteady flow conditions. Numerical experiments were
used to test the looped-rating Muskingum-Cunge model. Resolution level, flood wave period, baseflow, and
peak-inflow/baseflow ratio were varied to determine loop thickness and percentage mass conservation. Com-
parison of the looped-rating Muskingum-Cunge model with a dynamic wave model (a complete solution of the
St. Venant equations) showed that both models are capable of generating looped ratings and outflow hydrographs
of comparable accuracy.
INTRODUCTION

The Muskingum-Cunge flood routing model is well estab-
lished in hydrologic engineering practice. It can simulate the
convection and diffusion of flood waves in an expedient and
accurate manner (Cunge 1969; Ponce and Yevjevich 1978;
Ponce et al. 1996). The convection is characterized by the
wave celerity, defined as the slope of the discharge-area rating
(Seddon 1900; Chow 1959). The diffusion is characterized by
the hydraulic diffusivity, defined as one-half of the unit-width
discharge divided by the water surface slope (Hayami 1951).

The conventional Muskingum-Cunge model is based on
kinematic wave theory; thus, it uses the equilibrium or bottom
slope in the expression for hydraulic diffusivity. This assump-
tion leads to a single-valued rating, which limits the model in
certain cases. In this paper, we extend the Muskingum-Cunge
model to the realm of looped dynamic ratings. This is accom-
plished by reformulating the Muskingum-Cunge algorithm to
use the local water surface slope and the Vedernikov number
in the expression for hydraulic diffusivity. This makes possible
the simulation of looped ratings, which more closely resemble
the actual flood wave propagation. To assess the accuracy of
the computation, we compare our looped ratings with those
calculated using a dynamic wave model (Liggett 1975; Liggett
and Cunge 1975; Fread 1993).

MUSKINGUM-CUNGE ROUTING MODEL

The conventional Muskingum-Cunge model is well estab-
lished (Cunge 1969; Ponce and Yevjevich 1978; Ponce 1986;
HEC-1 1990). The routing equation, including lateral inflow/
outflow, is the following (Fig. 1):

n11 n11 n nQ = C Q 1 C Q 1 C Q 1 C Q (1)j11 0 j 1 j 2 j11 3 L

where j = spatial index; n = temporal index; and QL = lateral
flow (source or sink). The routing coefficients are the follow-
ing:
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FIG. 1. Schematic of x-t Plane for Muskingum-Cunge Model

1 2 C 1 D
C = (4)2 1 1 C 1 D

2C
C = (5)3 1 1 C 1 D

where C and D = Courant and cell Reynolds numbers, re-
spectively.

The Courant number is the ratio of the flood wave celerity
c to the grid celerity Dx/Dt, such that

Dt
C = c (6)

Dx

The cell Reynolds number is the ratio of the hydraulic dif-
fusivity q/(2S) (Hayami 1951) to the grid diffusivity cDx/2
(Ponce and Yevjevich 1978), such that

q
D = (7)

ScDx

where q = unit-width discharge; and S = channel slope.
In the conventional Muskingum-Cunge model, channel

slope is approximated by bottom slope (in prismatic channels)
or equilibrium slope (in natural channels). In the linear mode
of computation, the routing parameters are based on reference
flow values and are kept constant throughout the computation
in time. This mode of computation is referred to as the con-
stant-parameter method (Dooge 1973), to distinguish it from
the variable-parameter method, in which the routing param-
eters are allowed to vary with the flow (Ponce and Yevjevich
1978).

In the nonlinear mode, the routing parameters are based on
average values of q and c at each computational cell. This can
be achieved with a direct three-point average of the values at
the known grid points, or by a iterative four-point average,
which includes the unknown grid point ( j 1 1, n 1 1) (Ponce
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and Chaganti 1994). To improve convergence, the three-point
average is used as the first guess at the iteration. Channel slope
S remains unchanged within each computational cell.

A recent extension of the Muskingum-Cunge model enables
it to partially account for the flow dynamics. This is accom-
plished by modifying the hydraulic diffusivity to include the
Vedernikov number (Dooge et al. 1982; Ponce 1991), effec-
tively converting it into a dynamic hydraulic diffusivity nd

q 2n = (1 2 V ) (8)d 2S

where V = Vedernikov number, defined as the ratio of relative
kinematic to relative dynamic wave celerities (Vedernikov
1945, 1946; Craya 1952; Chow 1959). Thus, when the Ved-
ernikov number is equal to 1, the hydraulic diffusivity van-
ishes. With (8), the cell Reynolds number is now defined as
follows:

q 2D = (1 2 V ) (9)
ScDx

LOOPED-RATING MUSKINGUM-CUNGE MODEL

According to flood wave propagation theory, wave diffusion
invariably produces a looped rating; i.e., for a given stage, the
discharge is higher in the rising limb than in the receding limb.
The loop thickness increases as the wave becomes more dif-
fusive and decreases as the wave becomes more kinematic.

In the cases where the loop exists and is significant, its
calculation may portray more accurately the nature of flood
wave propagation. In Muskingum-Cunge routing, the looped
rating can be accounted for by using the local water surface
slope in the expression for hydraulic diffusivity.

A looped-rating Muskingum-Cunge model was developed
by modifying the four-point variable-parameter model (Ponce
and Chaganti 1994). Unlike the conventional model, the
looped-rating model uses flow depth as an intrinsic part of the
computation. For each computational cell, the procedure con-
sists of the following steps:
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1. Flow depth at point ( j 1 1, n 1 1) is used, together
with the other three known flow depths in the cell to
calculate the average cell water surface slope and flow
depth. To improve the convergence of the iterative pro-
cedure, the result of the conventional four-point calcu-
lation is used as a first guess of the iteration.

2. The cell water surface slope and flow depth are used
together with the Manning equation to develop a rating,
from which a reference discharge and celerity are cal-
culated.

3. The cell flow depth, reference discharge, and celerity are
used to calculate the routing parameters [(6) and (9)],
from which the routing coefficients are calculated [(2)–
(5)].

4. Using (1) and the routing coefficients, a new discharge
at point ( j 1 1, n 1 1) is calculated.

5. The new discharge and the rating developed in step
2 are used to calculate a new flow depth at ( j 1 1, n
1 1).

6. The procedure is repeated (steps 1–5) until the difference
between two consecutively calculated discharges (in step
4) is within a small, specified tolerance.

NUMERICAL EXPERIMENTS

A program of numerical experiments was devised to test the
looped-rating Muskingum-Cunge algorithm. A hydraulically
wide channel was assumed so that computations could be car-
ried out in terms of unit-width discharge and flow depth. This
ensures that the routing remains one-dimensional, thereby
avoiding the complexities associated with channel overflows.

The bottom slope was fixed at S0 = 0.0005 and a channel
length L = 200 km was chosen. For this bottom slope and
channel length, the amount of wave diffusion is sufficient to
produce a measurable loop at the downstream end.

A Manning friction coefficient n = 0.04 was selected. Since
the channel is hydraulically wide, the exponent of the rating
is b = 5/3 (Chow 1959). The following two baseflow values
were chosen: qb = 1 and 2 m2 ?s21. The following two peak-
inflow/baseflow ratios were chosen: qpi/qb = 2 and 5.

The inflow hydrograph was assumed to be
TABLE 1. Summary of Results Using Looped-Rating Muskingum-Cunge Model

Resolution
level
(1)

Flood wave
period T

(h)
(2)

Baseflow qb

(m2 ?s21)
(3)

Peak-inflow/baseflow
ratio
qpi /qb

(4)

Loop
thickness

(m)
(5)

Dimensionless
loop thickness

(6)

Dimensionless
discharge

(7)

Mass
conservation

(percent)
(8)

I 24
48
96

1 2 0.024
0.021
0.011

0.014
0.011
0.006

0.560
0.580
0.540

103.05
101.06
100.29

I 24
48
96

1 5 0.119
0.126
0.062

0.043
0.046
0.026

0.600
0.510
0.340

106.34
102.30
100.58

II 24
48
96

1 2 0.028
0.021
0.010

0.016
0.011
0.006

0.550
0.590
0.470

102.98
100.97
100.25

II 24
48
96

1 5 0.155
0.139
0.059

0.054
0.047
0.024

0.710
0.650
0.390

107.46
102.42
100.54

I 24
48
96

2 2 0.044
0.034
0.018

0.016
0.012
0.006

0.690
0.560
0.520

102.68
100.89
100.24

I 24
48
96

2 5 0.216
0.177
0.086

0.047
0.038
0.022

0.740
0.710
0.430

106.10
101.96
100.48

II 24
48
96

2 2 0.049
0.034
0.015

0.018
0.013
0.006

0.670
0.430
0.450

102.61
100.76
100.20

II 24
48
96

2 5 0.236
0.195
0.080

0.059
0.047
0.022

0.560
0.550
0.350

106.22
101.85
100.42
1



q 1 q q 2 q 2ptpi b pi b
q = 2 cos (10)i 2 2 T

where qi = inflow at time t; qpi = peak inflow; and T = flood
wave period (Thomas 1934; Dooge 1973). The following three
wave periods were chosen: T = 24, 48, and 96 h. These wave
periods are within the diffusive wage range for these flow
conditions (Ponce et al. 1978b).

Two resolution levels were chosen—resolution I with Dx =
10 km, and Dt = 3 h; and resolution II with Dx = 5 km, and
Dt = 1.5 h. With resolution I, the number of space steps is 20;
with resolution II, the number of space steps is 40. The total
simulation time was set at five times the wave period. The
total number of time steps is a function of resolution level (I
or II) and wave period (24, 48, or 96 h). For example, for
resolution I and T = 96 h, the number of time steps is 5 3
(96/3) = 160.
J

The testing program varied the following four parameters,
for a total of 24 runs:

1. Resolution level (I and II)
2. Flood wave period (24, 48, and 96 h)
3. Baseflow (1 and 2 m2 ?s21)
4. Peak-inflow/baseflow ratio (2 and 5)

A summary of the results is shown in Table 1. All 24 runs
showed a measurable loop in the discharge-depth rating. Loop
thickness is taken as the maximum difference between the flow
depths of the rising and receding limbs.

Dimensionless loop thickness is defined as the loop thick-
ness divided by the average of the two flow depths (measured
at the loop thickness). Dimensionless discharge (at the loop
thickness) is defined as the difference between discharge (at
the loop thickness) and baseflow, divided by the difference
FIG. 2(a). Typical Looped Ratings Generated by the Muskingum-Cunge Model—Period 5 24 h

FIG. 2(b). Typical Looped Ratings Generated by the Muskingum-Cunge Model—Period 5 48 h
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FIG. 2(c). Typical Looped Ratings Generated by the Muskingum-Cunge Model—Period 5 96 h
between peak outflow and baseflow. Mass conservation (in
percentage) is defined as the ratio between the outflow and
inflow hydrograph volume, excluding baseflow, multiplied by
100.

Table 1 shows that as the period increases (column 2), the
wave becomes more kinematic and the loop thickness de-
creases (columns 5 and 6). Conversely, as the period decreases,
the wave becomes more diffusive and the loop thickness in-
creases. These results are in agreement with established flood
wave propagation theory (Lighthill and Whitham 1955).

The loop thickness (column 5) varied between 0.010 and
0.236 m, and the dimensionless loop thickness (column 6) var-
ied between 0.006 and 0.059 (0.6% and 5.9%, respectively).
Both loop thickness and dimensionless loop thickness increase
as the flow becomes more diffusive. The dimensionless dis-
charge (column 7) varies between 0.35 and 0.74, with the
lower values being associated with the longer periods, for
which the flow is more kinematic.
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Table 1 shows that the looped-rating Muskingum-Cunge al-
gorithm has a slight tendency to artificially gain mass (column
8). The mass gain increases with loop thickness and peak-
inflow/baseflow ratio. Attempts to develop a Muskingum-
Cunge algorithm that produced a loop rating while conserving
mass exactly were not successful. The relatively small mass
gain is judged to be within the normal accuracy of hydrologic
engineering computations. Figs. 2(a)–2(c) show typical looped
ratings generated by the Muskingum-Cunge model, corre-
sponding to resolution II; wave periods of 24, 48, and 96 h;
a baseflow of 1 m2 ?s21; and a peak-inflow/baseflow ratio of 5.

COMPARISON WITH DYNAMIC WAVE MODEL

The looped ratings generated by the Muskingum-Cunge
model were compared with ratings generated using DYNA, a
dynamic wave model based on the St. Venant equations (Ponce
1982). A significant feature of a dynamic wave model is that
FIG. 3(a). Typical Looped Ratings Generated by the Muskingum-Cunge and Dynamic Wave Models at a Distance of 200 km—L 5
400 km



FIG. 3(b). Typical Looped Ratings Generated by the Muskingum-Cunge and Dynamic Wave Models at a Distance of 200 km—L 5
600 km

FIG. 4. Comparison of Outflow Hydrographs Generated by the Looped Rating Muskingum-Cunge and Dynamic Wave Models at a
Distance of 200 km
it requires the specification of a downstream boundary con-
dition. Since the looped rating is not known beforehand, a
single-valued rating is usually assumed. However, the single-
valued rating contradicts the solution at the boundary and af-
fects the calculated results upstream (Abbott 1976).

In practice, the looped rating at the downstream boundary
can be modeled in one of two ways—(1) by using the friction
slope in lieu of the bottom slope, in a procedure that closely
resembles the looped-rating Muskingum-Cunge algorithm
(Fread 1993); or (2) by artificially extending the channel to
specify a single-valued rating at a section farther downstream,
while giving the loop a chance to develop at the upstream
cross section of interest. Sensitivity analyses using several
lengths of channel extension can provide a guide to determine
the appropriate length.

For the purpose of comparison, a subset of the original test-
ing program (resolution II; periods of 24, 48, and 96 h; a
baseflow of 1 m2 ?s21; and a peak-inflow/baseflow ratio of 2)
J

was run with the dynamic wave model. Since the channel
reach length for the testing program is 200 km, the model was
run using 400- and 600-km channel lengths.

A key parameter of the Preissmann scheme (featured in
DYNA) is the weighting factor u, which is used to control
numerical instability. Theoretically, a value of u = 0.5, al-
though second-order accurate, is unable to control nonlinear
instabilities that sometimes plague dynamic wave computa-
tions. Offsetting the scheme to the stable side, i.e., increasing
the value of u above 0.5, will increase stability at a cost of
reduced convergence (O’Brien et al. 1951; Ponce et al. 1978a).
In practice, values of u between 0.5 and 0.6 are commonly
used to achieve a workable compromise between stability and
convergence (Fread 1993).

In dynamic wave routing, the choice of weighting factor is
the responsibility of the modeler. In our case, several values
of u were tried in order to determine the most suitable value.
The larger values of u eliminated numerical instabilities, but
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at the cost of decreased convergence (a substantial reduction
of peak flow). A value of u = 0.55 was chosen to closely match
the dynamic wave model results with those of the looped-
rating Muskingum-Cunge model.

Figs. 3(a) and 3(b) show typical looped ratings for the Mus-
kingum-Cunge and dynamic wave models, at a distance of 200
km. In the case of the dynamic wave model, the looped rating
was produced by the artificial extension of the channel. The
looped ratings (at 200 km) for the 400- and 600-km channel
lengths shown in Figs. 3(a) and 3(b) were essentially the same.
Therefore, it is concluded that the 400-km channel length was
sufficient to produce an accurate looped rating at the cross
section of interest (at 200 km). Fig. 4 shows outflow hydro-
graphs for the looped-rating Muskingum-Cunge and dynamic
wave models. Only the dynamic wave model results for L =
400 km are shown. There is substantial agreement between the
outflow hydrographs calculated by both models.

SUMMARY AND CONCLUSIONS

A looped-rating Muskingum-Cunge model was developed
by reformulating the conventional four-point model to use the
local water surface slope and the Vedernikov number in the
expression for hydraulic diffusivity. The developed model was
successful in generating looped ratings under a wide range of
kinematic/diffusive unsteady flow conditions, i.e., within the
range of applicability of the Muskingum-Cunge method
(Ponce et al. 1978b; Ponce and Yevjevich 1978).

A program of numerical experiments was used to test the
looped-rating Muskingum-Cunge model. Resolution level,
flood wave period, baseflow, and peak-inflow/baseflow ratio
were varied to determine loop thickness, dimensionless loop
thickness, dimensionless discharge, and percentage mass con-
servation. Comparison of the looped-rating Muskingum-Cunge
model with a more complex dynamic wave model (DYNA)
showed that both models are capable of generating looped rat-
ings and outflow hydrographs of comparable accuracy.
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APPENDIX II. NOTATION

The following symbols are used in this paper:

C = Courant number, (6);
C0 = routing coefficient, (2);
C1 = routing coefficient, (3);
C2 = routing coefficient, (4);
C3 = routing coefficient, (5);

c = flood wave celerity;
D = cell Reynolds number, (7) and (9);
j = spatial index;

L = channel length;
n = temporal index [(1)], also Manning friction coefficient;
Q = discharge;

QL = lateral flow (source or sink);
q = unit-width discharge;

qb = baseflow;
qi = inflow at time t;

qpi = peak inflow;
qpi/qb = peak-inflow/baseflow ratio;

S = channel slope;
S0 = bottom slope;
T = flood wave period;
t = time;

V = Vedernikov number;
b = exponent of rating;

Dt = time step;
Dx = space step;

u = weighting factor of Preissmann scheme; and
nd = dynamic hydraulic diffusivity.


