skip to main content
Calculation of total sediment discharge by the Modified Einstein Procedure (USBR method), Victor Miguel Ponce, San Diego State University


    online_modified_einstein:   Total sediment discharge by the Modified Einstein Procedure    (Version 1.42 Beta 090904)


photo of MEP

References

  1. Einstein, H. A., 1950. The bed-load function for sediment transportation in open channel flows. USDA Soil Conservation Service, Technical Bulletin No. 1026, Washington, D.C., September.

  2. Colby, B. R. and C. H. Hembree, 1955. Computations of total sediment discharge, Niobrara river, near Cody, Nebraska. U.S. Geological Survey Water Supply Paper 1357, Washington, D.C.

  3. U.S. Bureau of Reclamation, 1955. Step method for computing total sediment load by the Modified Einstein Procedure. Sedimentation Section, Hydrology Branch, Project Investigations Division, July.

  4. U.S. Bureau of Reclamation, 1966. Computation of "Z's" for use in the Modified Einstein Procedure. Sedimentation Section, Hydrology Branch, Project Investigations Division, June.


INPUT DATA:

[Sample input]     [Rationale]     [Procedure]     [Features]

Stream or river (optional):  

Select:        U.S. Customary or SI units [Default: U.S. Customary Units].


1. Discharge Q [cfs] (m3/s):       

2. Mean velocity u [fps] (m/s):       

3. Average depth d [ft] (m):       

4. Width w [ft] (m):       

5. Flow area A = 0  

6. Water temperature t [oF] (oC):       

7. Kinematic viscosity ν = 0.00000000  

8. Diameter D65 [ft] (mm):       

9. Diameter D35 [ft] (mm):       

10. Measured concentration C [ppm] (ppm):       

11. Sampled suspended load Qsm = 0  

12. Vertical distance not sampled dn [ft] (m):       

13. Mean water depth at sampled verticals ds [ft] (m):       


14. Number of size fractions:       Normal has 9 size fractions (1 fine and 8 coarse); Long has 10 size fractions (2 fine and 8 coarse) [Default: Normal].

15. Enter fraction of bed material in each size range (make sure it is 9 values for Normal; 10 values for Long) (separate each value with a comma; maximum character length is 100 characters).

ib:     

16. Enter percentage of suspended material in each size range (make sure it is 9 values for Normal; 10 values for Long) (separate each value with a comma; maximum character length is 100 characters).

Q's:     

17. Z' mode of computation:       See No. 6 in Features [Default: USBR (1955)].


OUTPUT:

NORMAL
0123456789101112131415161718192021222324
iSize
fraction
(mm)
D
(mm)
D
(ft)
ψφ*/21200 D3/2ibibqb43.2 wiBQB

(T/D)

% Size
Q's
Q's

(T/D)

Mult.Z'A"J'1-J'2J"1-J"2PJ"1+J"2
________

PJ'1+J'2

I"1-I"2PI"1+I"2+1Computed
load

(T/D)

10.002-0.06250.01120.000037                     
20.0625-0.1250.08840.00029                     
30.125-0.250.1770.00058                     
40.25-0.50.3540.00116                     
50.5-10.7070.00232                     
61-21.410.00464                     
72-42.830.00928                     
84-85.660.01856                     
98-1611.310.03712                     
-Total                       

LONG
0123456789101112131415161718192021222324
iSize
fraction
(mm)
D
(mm)
D
(ft)
ψφ*/21200 D3/2ibibqb43.2 wiBQB

(T/D)

% Size
Q's
Q's

(T/D)

Mult.Z'A"J'1-J'2J"1-J"2PJ"1+J"2
________

PJ'1+J'2

I"1-I"2PI"1+I"2+1Computed
load

(T/D)

10.002-0.01560.00560.000018                     
20.0156-0.06250.03120.00010                     
30.0625-0.1250.08840.00029                     
40.125-0.250.1770.00058                     
50.25-0.50.3540.00116                     
60.5-10.7070.00232                     
71-21.410.00464                     
82-42.830.00928                     
94-85.660.01856                     
108-1611.310.03712                     
-Total                       


            

  Your request was processed at  07:45:06 am on November 27th, 2014   [ 141127  07:45:06 ].


Thank you for running online_modified_einstein.   [080808]

 

online calc
normal depth critical depth normal and critical depth discharge in channel critical slope
normal depth in culvert critical depth in culvert discharge in culvert discharge sluice discharge weir
M1 wsprofile M2 wsprofile M3 wsprofile S1 wsprofile S2 wsprofile S3 wsprofile
C1 wsprofile H2 wsprofile A2 wsprofile C3 wsprofile H3 wsprofile A3 wsprofile
sequent depth HJ energy loss HJ initial sequent HJ efficiency HJ critical width constriction
ogee spillway Hazen-Williams parallel pipes three reservoirs tractive force
V-notch weir V-notch partially contracted Cipolletti weir Rectangular weir Standard contracted rectangular weir Standard suppressed rectangular weir
Froude number Vedernikov number Limiting contracting ratio
Creager rational slope-area linear reservoir storage indication 1 storage indication 2
Muskingum Muskingum-Cunge time-area Clark UH Cascade of linear reservoirs
USGS Methods for magnitude of floods in California Kinematic wave applicability Diffusion wave applicability Clark's unit hydrography compared to Ponce's version Correlation coefficient of a joint probability distribution Storage volume of a detention basin
Blaney-Criddle Penman Penman-Monteith reference crop Thornthwaite Priestley-Taylor Penman-Monteith ecosystems
Gumbel Gumbel 2 Log Pearson Log Pearson 2 TR-55 graphical curve number
Overland flow using the diffusion wave method Dynamic hydraulic diffusivity convolution S-hydrograph time of concentration water balance
UH cascade dimensionless UH cascade general UH cascade series UH cascade all series UH cascade
one-predictor linear one-predictor nonlinear two-predictor linear two-predictor nonlinear hyperbolic regression
fall velocity Lane & Koelzer USLE USLE2 Dendy-Bolton Shields
Duboys Meyer-Peter Colby 1957 Colby reservoir design life Equilibrium channel top width using the Lane et al. theory
Modified Einstein Procedure bridge scour using Melville equation
DO sag DO sag analysis Oxygenation Salinity (EC to TDS)