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incorrect phase relationships. The capability and

studies reveal that diffusion of short-period waves
inertia is negligible.

INTRODUCTION

rent concerns regarding energy resources have renewed
est in hydroelectric power generation, particularly for
g peak power demands. Peak power generation with
lropower creates flow regimes in tailwater rivers charac-
zed by high and low flows, with abrupt flow and stage
nsitions between these states. Because of these abnor-
| flow conditions, water temperature and quality in tailwa-
s are modified from those occurring naturally in the stream.
gthy periods of zero flow resulting from low power
demand or water availability affect the ability of a tailwater to
intain a viable aquatic ecosystem. Sharp stage transitions
yinter can disrupt a stable ice cover, inducing ice jamming
d frazil ice generation. Therefore, an accurate description of
apidly varying flow regime is important to assess poten-
effects of peak power generation upon a stream. In addi-
understanding these downstream-propagating, sharp-
nted, large-amplitude flow waves of relatively short period
mportant because of similarity to waves following the
h of a dam.
1 this paper we will develop a numerical model to investi-
¢ the flow regime of a tailwater by first determining the
cal processes of primary importance and then analyzing
numerical solution technique. Analysis of the physical pro-
was undertaken because flow regimes in tailwaters are
mplex, and general mathematical descriptions are burden-
and do not necessarily provide the most useful and accu-

pyright 1984 by the American Geophysical Union.

number 3W1757.
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An understanding of the downstream propagation of sharp-fronted, large-amplitude waves of rela-
tively short period is important for describing rapidly varying flows in tailwaters of hydroelectric plants
and following the breach of a dam. We developed a numerical model of these waves by first identifying
the primary physical processes and then performing an analysis of the solution. A linear analysis of the
dynamic open channel flow equations provides relationships describing flow wave advection, diffusion,
and dispersion in rivers. A one-dimensional diffusion wave model modified for application to tailwaters
simulates the important physical processes and is straightforward to apply. The “modified equation” and
von Neumann analyses provide insight into the effects of numerical parameters 0, Ax, and At upon
stability and dissipative and dispersive behavior of the solution, but the Hirt analysis is found to yield

accuracy of the model are enhanced when physical

diffusion of a river wave is balanced by numerical diffusion in the model. Field studies were conducted in
two greatly different tailwaters to assess our understanding of large-scale, rapidly varying flow waves.
The accurate simulation of waves having wide-ranging amplitudes, shapes, periods, and base flows attests
to the soundness of both the physical basis of the model and the numerical solution technique. These

in natural, free-flowing rivers is significant and that

rate model. Though frequently given little attention, analysis
of the numerical solution is critical to understanding model
behavior and thus for optimal selection of numerical parame-
ters and interpretation of model output.

Analysis of the dynamic open-channel flow equations yields
insight into the physical processes of importance in tailwater
flow. The processes of wave advection, diffusion, and disper-
sion in channels are related to terms in the momentum equa-
tion. Presented in nondimensional form, the relative mag-
nitudes of these processes indicate the importance of terms in
the momentum equation and provide physical insights that
guide model selection. This analysis indicates that relatively
short-period waves in rivers are significantly affected by diffu-
sion and that inertia has a small effect upon flow waves at
relatively small Froude numbers in natural channels, contra-
dicting the general belief that inertia is important in rapidly
varying flows. Therefore, we selected and modified the inertia-
free diffusion wave model of Koussis [1976] for application to
tailwater flow.

Exact solutions of the continuity equation that forms the
basis of the diffusion wave model do not exhibit diffusion that
is necessary to simulate wave movement in natural rivers.
Through analysis of the numerical solution, however, it is pos-
sible to compensate for the lack of physical diffusion by quan-
tifying and controlling numerical diffusion. Also, the analysis
of the model guides numerical mesh selection (Ax, At) for
optimal accuracy. The analysis of a numerical model is basic
to model development but is frequently limited to the devel-
opment of stability criteria. Numerical stability requires that
errors introduced in the solution do not increase in magnitude
as the computation progresses. Numerical models must be
stable if the solution obtained is to be meaningful. The con-
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272 FERRICK ET AL.: TAILWATER FLOW

ditions required for stability of many numerical schemes are
known, and numerical instability is generally apparent. The
von Neumann and Hirt analyses are frequently used to devel-
op stability criteria [Roache, 1976].

Numerical solutions of the unsteady open channel flow
equations typically exhibit errors in both amplitude and phase
that may not be apparent without further analysis. Numerical
dissipation or diffusion causes the Fourier components of the
solution and the errors to be damped. Numerical dispersion
results when the modeled wave celerity of some wavelength
components differ from those of the governing equation, im-
properly modifying the wave form as the computation pro-
ceeds. The effects of numerical dissipation and dispersion
upon the solution are subtle but gradually destroy the corre-
spondence between model and prototype. An improved under-
standing of the dissipative and dispersive behavior of the nu-
merical model enables the analyst to minimize or exploit these
effects to enhance model accuracy and to better interpret com-
puted results.

Though only strictly applicable to linear equations, the
“modified equation” [Warming and Hyett, 1974], Hirt and
von Neumann analyses are used to relate the dissipative and
dispersive behavior of the model to parameters of the numeri-
cal solution. A set of linear routings is used to demonstrate the
model behavior predicted with the analysis and to verify the
adequacy of an expression for numerical diffusion developed
in the modified equation analysis.

We compare model simulations with extensive field data
from a number of large-amplitude, sharp-fronted waves in the
Apalachia and Norris Dam tailwaters that have very different
bed slope and roughness characteristics. The accuracy
achieved with the model in these field applications verifies its
generality for rapidly varying river flow and reinforces the
utility of both the analysis of the dynamic equations and the
analysis of numerical solution behavior. The field applications
demonstrate the importance of flow wave diffusion and the
dominance of friction over inertia in rivers.

PHYSICAL BASIS FOR MODEL DEVELOPMENT

The development of a mathematical statement describing
important unsteady flow processes in a specific case relies
upon a clear physical understanding. In this section we will
develop a framework for obtaining insights into flow wave
movement in open channels from the one-dimensional dynam-
ic equations. The dynamic equations of flow in open channels
(St. Venant equations) are the commonly used statements of
conservation of mass and momentum balance when the lon-
gitude is the important spatial dimension. Flow in unstratified
or weakly stratified reservoirs and in rivers having a signifi-
cant base flow is generally modeled by using these equations;
however, standard numerical solutions fail if the flow depth
approaches zero. This condition is common in tailwaters of
dams used to generate peak power, motivating the search for
an alternate mathematical statement. If the local and advec-
tive inertia terms of the momentum equation are neglected,
the resulting equations can be solved without difficulty as the
flow depth becomes small. However, Cunge et al. [1980] cau-
tion that routing methods based upon inertia-free equations
may not be applicable in situations where rapid stage and
discharge variations occur, such as in tailwaters.

The dynamic equations for a free-flowing river with a wide
prismatic rectangular channel and no local inflow are

dy 10Q

a B0 (1)
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where t is time (s), x is distance along the channel (m), y is flow
depth (m), Q is discharge (m3/s), B is channel width (m), gis
acceleration due to gravity (m/s?), S, is the slope of the |
channel bottom, and C is the Chezy conveyance coefficient
(m*/?/s). If the coefficients of (1) and (2) are assumed constant
at appropriate reference values, the equations can be com-
bined and expressed in terms of a single dependent variable
yielding i
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a hyperbolic equation. Equation (3) can be manipulated fur-l
ther to eliminate the second-order mixed and temporal deriva-
tives 4
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where ¢ is wave celerity, A the channel cross-sectional ar
and F the Froude number V/\/E. If second- and higher-or
terms in (4) are neglected, the kinematic wave equation, free
physically based diffusion, is obtained. When third- a
higher-order terms are neglected, (4) contains positive physi
diffusion, and describes a diffusion wave. i

The wave celerity given in (4) is that of a kinematic wave :
and is a consequence of the importance of friction in ti
flow. The kinematic wave celerity is typically much sloy
than the dynamic wave celerity V + \/;_y, important wh
friction is small in relation to inertia. Tracing through
development of (4) reveals that the source of the diffusion te
is primarily the water surface slope term of the moment
equation. The dependence of the diffusion coefficient D upof
the Froude number results from including the inertia terms in
the development. The dispersion coefficient E, given in (4)
varies linearly with the magnitude of the diffusion coefficient
and quadratically with the Froude number. The existence of
the dispersion term and the higher-order terms follow from
the inertia terms. When the Froude number is significantly
less than 1, (4) simplifies to the advective diffusion equati
developed by Cunge [1969], neglecting inertia.

The opposing tendencies of wave diffusion and w
steepening due to nonlinear advection are combined in
Whitham [1974] studied the wave front separating steady fl
domains with a simplified form of (4) having constant D a
excluding terms higher than second order. He found tha
steady transition profile evolves and remains continuous wh
diffusion is present that has a length proportional to the m
nitude of D. The magnitude of D approaches zero for smoo
steep channels, which therefore are good candidates for sho



ation and successful application of the kinematic wave
on.

ith reference discharge Q, and spatial and temporal in-
nents Ax and At, (4) is rewritten in dimensionless form in
of 0* = 0/Qo, x* = x/Ax, and t* = t/At as

0Q* 52Q* 53Q*
= . D* E* D*
s C, e C, T2 + E* D* C, p
+ (higher-order terms)
cAt
C,=—
= e )
D
D* = —
cAx

o O _pof Y
2gB?y*S,Ax 25,Ax

where C, is the Courant number, D* a dimensionless diffusion
| flicient, and E* a dimensionless dispersion coefficient. The
gnitude of Ax selected should provide adequate resolution
the features of the shortest wavelength of interest.

The magnitude of D* relative to 1 is a measure of the im-
ortance of diffusion relative to advection. When this quantity
significantly less than 1, advection is dominant over diffu-
sion. The magnitude of E* relative to 1 measures the impor-
e of dispersion relative to diffusion. As E* is proportional
o the square of the Froude number, its magnitude for natural
rs is generally much less than 1, revealing that the flow is
minated by friction and essentially independent of inertia.
The validity of using inertia-free methods for rapidly vary-
tailwater flow can be investigated further with the frame-

once and Simons [1977], Ponce et al. [1978], and Menéndez
nd Norscini [1982] and the order-of-magnitude analysis of
enderson [1963]. The results of Ponce et al. can be readily
to gain insight into attenuation and propagation charac-
ics of the inertia-free models relative to those of the dy-
mic model. For a range of channel and flow parameters
aracteristic of tailwaters, attenuation and propagation
ors resulting from neglecting inertia appear small. Hender-
son compared terms of the momentum equation for a wide

gular channel and found that the inertia terms were of
same order of magnitude and were related to the water
rface slope term as

inertia term

Jy/0x

is result supports the relationship between inertia and the
are of the Froude number given in (4). Henderson also
pared the water surface and bottom slope terms, obtain-

= O(F?) (6)

ing
dy/0x o« oq/ot
SO q2/3S05/3

where ¢ is the discharge per unit width. For flood flows in
tural streams the magnitude of the water surface slope is
often small in relation to that of the bottom slope. However,
tailwaters where sudden large-magnitude flow changes
occur, dg/0t can be large, and the water surface slope is ex-
ed to make an important contribution to the momentum
ance. The importance of the water surface slope is en-
ced further in rivers having small bottom slopes.

The analyses support the use of an inertia-free model for
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k provided by the linear small perturbation analyses of -
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tailwater flow and indicate the importance of diffusion re-
sulting from the water surface slope. The water surface slope is
discontinuous at the toe of a rapidly varying flow wave, and a
number of waves may exist simultaneously in a tailwater, in-
troducing additional modeling complications of accurately lo-
cating each front and evaluating the water surface slope in the
vicinity of a front. The kinematic wave equation neglects the
water surface slope term in addition to the acceleration terms
of the momentum equation, avoiding these complications.
This additional simplification does not permit wave diffusion;
however, numerical solutions of the kinematic wave equation
frequently exhibit diffusion resulting from the solution tech-
nique [Cunge, 1969; Smith, 1980]. If this numerical diffusion is
used to mimic the physical diffusion occurring in the channel,
the inherent model limitation to diffusion-free flows can be
overcome.

As a physically meaningful downstream boundary is not
generally available in tailwaters, models not requiring a down-
stream boundary condition are most readily applied. Solu-
tions of the kinematic wave equation are independent of
downstream influences and do not require a downstream
boundary condition. This model cannot account for the influ-
ence of downstream controls upon the flow, and application
to rivers with long pooled reaches is suspect. However, Smith
[1980] found that a variable weighting factor in the numerical
scheme, corresponding to a variable diffusion coefficient, al-
lowed successful application of kinematic wave-based models
to flood routing through flat, ponded reaches. The importance
of backwater effects upon rapidly varying flows found in tail-
waters has not been resolved.

DESCRIPTION OF THE DIFFUSION WAVE FLOW
ROUTING MODEL

Our diffusion wave model for flow in tailwaters differs from
most kinematic wave routing methods [Weinmann and Laur-
enson, 1979] in that both stage and discharge are computed at
each point in the numerical grid. The conservation of mass
equation is solved numerically for discharge. Exact solutions
of the continuity equation do not exhibit diffusion, which is
necessary to represent important physical processes in tailwa-
ter flows. The numerical solution of this equation, however, is
adjusted in the model to require numerical diffusion to mimic
physical diffusion. The equation for river stage includes a
water surface slope term that generates a looped rating curve
and provides an improved estimate of wave celerity. The equa-
tions are coupled through the wave celerity and must be
solved simultaneously.

The continuity equation for flow in open channels can be
written as

0 100
6x+c 6t_qi
()]
__do_ix
T dA dt

where g; is local inflow per unit length of the channel. Equa-
tion (7), which forms the basis of the model, is a first-order
hyperbolic equation. This equation type is advantageous for
modeling tailwater flow because a downstream boundary con-
dition need not be specified, but for this same reason, backwa-
ter effects cannot be taken into account.

The “method of lines,” in which the spatial derivative is
approximated with a finite difference expression but the de-
pendent variable remains continuous in time, is used to obtain
a solution of (7). The partial differential equation for conser-
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vation of mass is thereby reduced to an ordinary differential
equation. With the approximations

L o 10,10~ 0,0 ®)
X

aQ aQ] aQ_(+ 1

i +(1-0—— o )

in which j is an index corresponding to the spatial location
x = jAx, and 6 is a parameter of the numerical solution, (7) is
rewritten as

0;41(1) + aQ;, (1) = aQ;(t) + aAxq(t) — 9) g (10)
where
g (&)
T Ax(1—0)

0 is the derivative of discharge with respect to time, and {¢) is
an averaged celerity in space and time over the cell of the
computational mesh where the equation is applied. Assuming,
for a small time increment, that the variation of Q(¢) is linear,
that the values of the coefficients can be estimated, and that
the local inflow is constant, the solution of (10) is

QmeH =(1- “)Qj"IH + (. — ﬂ)Qjm + ﬂQme
+ qAx(1 — B) (11)
where
-C
p=exp (1 = 0)
1B
o=
C,
_ {o)At
G = Ax

The local Courant number of the numerical grid cell C, ex-
presses the ratio of physical to numerical wave celerity, and m
is the temporal index of the computational grid t = mAt.
Neglecting the inertia of the flow and the momentum con-
tribution of the local inflow, the momentum equation for pris-
matic channels is
ay

A (12)

in which S is the slope of the energy grade line. Inserting (12)
into Manning’s equation yields an expression for the stream

rating curve,
v =Sngan So— vy
n ox

where R is the hydraulic radius, n is Manning’s roughness
coefficient, and C,, is a constant that is dependent upon the
system of units. To obtain a relationship that is consistent
with the downstream-progressing discharge calculation of (11),
the spatial derivative in (13) is replaced with a quantity deter-
mined at a point. If the energy slope is adequately large, argu-
ments from kinematic wave theory can be used, and (13) can
be rewritten in a form of the “Jones formula” as

Co oo 1 aQ\!2
_m s 4+ %
4 n R 0+czB ot

(13)

(14)

We will assume for simplicity a wide rectangular channel, ai
with a finite difference approximation of the time derivative
(14) the flow depth is

On 3/5
' [C”.B(So +(@ - Qo)/CZBAt)m]

The depth corresponding to a given discharge varies d
pending upon the evaluation of the water surface slope and i
lower during the rising limb of a hydrograph than during the :
falling portion of the hydrograph. The accuracy of the de pth
calculation using (15) depends upon the relative magnitudes
the slope terms. In response to decreasing flow in a river
having a small bottom slope the denominator of (15) m
decrease more quickly than the numerator, causing the cal
lated stage to increase. This unphysical result signals the ne
for an alternate equation for modeling the flow depth. If
definition of celerity is approximated as

o _ AQ

T dA" BAy

then an alternate equation for flow depth is
= Yo+ == (@~ Qo)
Y =Yg B 0

The remaining unknown to be determined is wave celeri
The celerity of a kinematic or diffusion flood wave is rel
to the flow velocity by a multiplier that depends upon
channel shape and energy slope model used [Henderso
1963]. The wave celerity of steep-fronted tailwater releases
also dependent upon the flow depth on either side of the wa
front. In the extreme case of a rapid flow release to a p
viously dry channel the celerity of the front must equal
velocity of the flow immediately behind it. The monoclinal
rising wave is a translatory wave of stable form. If tailw
releases are presumed to be monoclinal waves during passaj
through a reach Ax, then an expression for wave celerity cz
be obtained. For a wide rectangular channel, with the Chez
equation used to describe the energy slope, the expression for

— s+ 1/}’1)3 zilV'

wave celerity is
Ci=
y I: (y]+ l/y])

For slowly rising hydrographs, (17) yields the familiar resu
for celerity of a flood wave: ¢ = 1.5 V.

The diffusion wave tailwater model is composed of coupl
nonlinear equations that are solved simultaneously. To
vance the computation in time, (11) is solved at each
point by using values of Q and ¢ from the previous time st
to evaluate the coefficients. The calculation for Q is explic
progressing in the downstream direction from a known flow
the upstream boundary and given initial conditions.
values of flow depth and celerity are then updated with (1
through (17). A converged solution is reached when compu
flows at successive iterations agree within a set tolerance
each location in the numerical grid. In simulations perform
at small Courant numbers a good initial estimate of the sol
tion is available from the previous time step, and convergen
is generally rapid.

ANALYSIS OF THE MODEL

The development of a numerical model should include
thorough analysis of the solution technique. Simulations per-



5* ed with a model assuming different numerical parameter
values will generally confirm their pronounced effects upon
“model stability, diffusion, and dispersion, which must be un-
tood to obtain accurate solutions that can be readily in-
sreted. In the diffusion wave model, grid parameters Ax
and At and the weight parameter 0 must be specified. The
‘capability of the model is enhanced by using 0 to enforce the
ance between physical and numerical diffusion and by
specifying a numerical grid that adequately resolves the flow
aves of interest, conserves mass, and minimizes the imbal-
ce between physical and numerical dispersion.

odified Equation and Hirt Analyses

The stability, damping, and dispersion characteristics of a
erence approximation to a partial differential equation can
investigated with the modified equation analysis of Warm-
and Hyett [1974] and with the Hirt analysis. The two
alyses follow the same basic steps with one important differ-
ce. Neglecting roundoff error, the modified equation repre-
ts the actual partial differential equation solved when a
umerical solution is obtained from a difference equation. To
tain the modified equation for the difference scheme of (11),
¢ expand each term in a Taylor series about Q;". Upon
plification, the resulting equation is

00 cAx 62Q At 62Q LA cAt 62Q cAx? 0°Q
c—= ¥
ox T 2 ox2 202 (1—-P) oxot 6 ox?

sz Q0  AxAt 3*Q t263‘_Q+ higher-order _id
92 020t 2x oxd | 6 o terms h

(18)

The modified equation has an infinite number of terms. Terms
 appearing in the modified equation but missing from the orig-
inal differential equation represent a type of truncation error.

~ Properties of a difference scheme can be found by exam-
ing a truncated version of the modified equation. The time
rivatives higher than first order and the mixed derivatives
are eliminated from (18) to obtain an equation that is amen-
able to physical interpretation. Even-order spatial derivatives
the recast equation correspond to dissipative effects, and
odd-order spatial derivatives reveal dispersive properties of
e model. In the Hirt analysis the governing differential equa-
on is used to simplify (18). However, a solution of the orig-
al differential equation will not, in general, satisfy the differ-
ence equation. Therefore, in the modified equation approach,
~ (18) itself is differentiated and used in the simplifying process.
The coefficients are assumed to be constant in both analyses.
~ Differences between the two procedures for the diffusion wave
model analysis appear in the coefficients of third- and higher-
order spatial derivatives.

Following the modified equation approach, (18) becomes

Q. o0 2Q 3Q higher-order
ot 4 ox  ox zt ox3 terms
_eAx (26 ¢
2 \1-p "
(19
cAx?
6
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Following Hirt’s analysis, the analogous expression for E is

ch2 1 3

Ey = (8 =1—=C2 1 20
=S [seli) e @

The modified equation can be rewritten in the form

o0 y+ lQ 2pQ
= Y u2p + 1) s Z H2p) ==, @D
p=0
The form of the solution of (21) is
Q(x, t) ~ e(a+ib)teikx

(22

0

a= 3 (—1PKu2p) b= ¥

= p=0

— 1Pk u2p + 1)

where k is the wave number (2n/wavelength) of the solution
component, and i = \/ —1.

As waves of large wave number cannot be resolved on a
numerical grid, waves with small wave numbers are of pri-
mary importance. For these waves the exponent a of (22) can
be approximated as

a~ —k*D (23)

where D is the diffusion coefficient defined in (19). A dimen-
sionless numerical diffusion coefficient D* = D/(cAx) of the
diffusion wave model is given in Figure 1 as a function of the
Courant number for various values of 6. For Courant num-
bers less than 0.5, damping is not a strong function of the
Courant number. A positive diffusion coefficient in the modi-
fied equation, necessary for a stable numerical solution, is
obtained if either 0 < 0.5 or C, > 1.0 and 6 < 1.0. Numerical
dissipation increases as 6 decreases and as C, increases. There-
fore, stability does not restrict either the minimum value of 6
or the maximum value of the Courant number, presenting the
possibilities of allowing negative 6 and large time steps in the
model.

Equation (5), describing wave movement in rivers, has the
same form as (21). Analysis of (5) revealed that flow in natural
rivers is adequately described by including terms through
second order. The Fourier components of the continuum solu-
tion of the resulting advective diffusion equation are Q, exp
[ik(x — ct) — Dk*t]. Components of all wave numbers are ad-
vected at ¢, and after an increment of time At, all components

have undergone a phase angle change @, of
®, = —ckAt = —C(kAx) = —C,y (24)

In the model, celerity is a function of wave number (22), and
the phase angle change of the numerical solution in time At is

—ckAt + At Y, (—1Pk*? " 1u(2p + 1)

p=1

@y = bAt = (25)

The ratio of the numerical to continuum phase shifts yields an
expression for the relative propagation speed of each Fourier
component per time increment
1 =)
@, =Dy /O, =1—= Y (—1°k*u2p + 1) (26)
¢ §4
Values of @, greater than 1 indicate that the numerical solu-
tion component of wave number k will have a celerity greater
than that of the continuum solution, with the converse true for
values of ®, less than 1. Since small wave numbers are of
primary importance in the numerical solution, (26) can be
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approximated as

k2u(3 2 2
¢,=1+—“c(—)+0(y4)z1+%[3c,<—— —1>—1

3 3
B 2C'2<1 A ﬂ)’)] o

Equation (27) is plotted as a function of the Courant
number for selected values of 0 in Figures 2—4 for wavelengths
of 24 Ax, 12 Ax, and 6Ax, respectively. At these wavelengths
the phase angle of the numerical solution predominantly lags
that of the continuum solution. The discrepancy is largest for
the shorter wavelengths, smaller values of 6, and larger values

20—
|2
D*
08— 0
04+
09
Stable
o _____
L. Unstable
-04 L [ 1 |
0 1.0 20
Cr
Fig. 1. Dimensionless numerical diffusion coefficient as a function

of Courant number for various values of the parameter ¢ based upon
the modified equation analysis.

|2

08 N}'lo 4

—— Modified Equation
—— von Neumann

7=-|7L

04—

0 I 2

Fig. 2. Ratio of numerical to continuum phase shifts in ti
for 24Ax wavelengths as a function of Courant number and vari
values of 0. One set of curves is based upon the modified equal
analysis and one set upon the von Neumann analysis.

of the Courant number. For the shorter waveleng
Courant numbers greater than 1 the phase angle of the
merical solution varies strongly with the Courant num
The numerical solution is most likely to exhibit leading
angles for waves of short wavelength with 6 approximately
and Courant number less than 0.5.

An analogous equation for the ratio of the nume
continuum phase shifts based upon the Hirt analysis
written by substitution of (20) for p(3) of (27), yielding

. LYoo
e el o)

Equation (28) is plotted in Figure 5 as a function of the
ant number for the same wavelengths and 0 values used v
(27). This series of curves projects quite different phase b
ior than the modified equation analysis. At a Courant
of 1 the Hirt analysis projects zero dispersion independe



— ———

——Modified Equation
——von Neumann

T

3. Ratio of numerical to continuum phase shifts in time At
Ax wavelengths as a function of Courant number and various
of 0. One set of curves is based upon the modified equation
and one set upon the von Neumann analysis.

gth and 0. Lagging phase angles are projected at
r Courant numbers, and all phase angles are leading at
Courant numbers. Shorter wavelengths and lower
of 0 are projected to have larger phase errors.

eumann Analysis

s a result of the truncation of terms in (23) the modified
ation analysis does not provide information regarding the
isive nature of the short-wavelength Fourier components
solution or of the errors that, at times, are responsible
tability of a numerical solution. Similarly, the approxi-
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mation in (27) limits the application of the modified-equation-
based phase relationship to waves of relatively small wave
number. In addition to its usual role of providing numerical
stability criteria, the von Neumann analysis can be used to
identify the diffusive and dispersive nature of Fourier compo-
nents of all wave numbers.

The evolution of the numerical solution in a time step At is
considered in this approach. If the coefficients o and f of (11)

l.2— ——Modified Equation

— —von Neumann
7:

0.8

¢

04

0]

Fig. 4. Ratio of numerical to continuum phase shifts in time At
for 6Ax wavelengths as a function of Courant number and various
values of 0. One set of curves is based upon the modified equation
analysis and one set upon the von Neumann analysis.
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are assumed to be constant, the solution can be written as a
Fourier series

Q" =Y 0" (29)
k
where 0,™ is an amplitude function at time mAt of the Fourier
component of wave number k. Each term of the difference
equation is replaced by its kth Fourier component, and
boundary influences are not considered. The decay or amplifi-
cation of each component is then evaluated by forming the
ratio of the amplitude functions at two successive times to
investigate stability and damping of the numerical scheme.

T
n 7=12
- \-I.O
——7% .
T,
73
| | ] |
0 | 2
C,

Fig. 5. Ratio of numerical to continuum phase shifts in time At
for 24Ax, 12Ax, and 6Ax wavelengths as a function of Courant
number and various values of 6 based upon the Hirt analysis.

1.0

0.8

0.6

Ir|2

0.4
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0]

Fig. 6. Square of the modulus of the amplification factor for
and 12Ax wavelengths as a function of Courant number and
values of 0.

Performing these operations upon (11) yields

_Op_atpe -1

T T ar e -

in which the complex number r, is termed the amplificati
factor. A necessary and sufficient condition for stability of th
solution is that the modulus of r, be less than or equal to 1 fo
all integer values of k [Richtmyer, 1957]. It follows t
square of the modulus of r, must also remain less
equal to 1 for a stable numerical solution, which from (30) i
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|rk|2 =

en |r,|? is equal to 1 for a component of wave number &,

numerical scheme is termed conservative or neutrally

le. Smaller values of |r,|?> correspond to larger inherent

sipation of the numerical scheme.

As long wavelengths are resolved over a relatively large
nber of grid points, y is small, and the following substitu-

tions can be made to simplify (31):

sin? y x y?
1 —cosy~7y2 (32)
(1 —cosy)?~0
g
2 _ _ 2
2 ~ o’ + [(1 — ) + BB — )Ty (33)

«® + 2(1 — a)y?

numerical solution will be stable for long-period waves if
er 0 < 0.5 or C,> 1.0 and 6 < 1.0, in agreement with the
ia following from the modified equation analysis. Figure
esents |r,|> as a function of Courant number for two wave-
hs (24 Ax, 12 Ax) and selected values of 6 (0.9, 0.5, 0.0,
0). Numerical diffusion is sensitive to C, and 6, as noted in
modified equation analysis, and exhibits the same trends.
long-period waves with equivalent 6 and C, the shorter
elengths are more highly damped.

- As mentioned above, the von Neumann approach permits
analysis of short-period waves. Assuming y is /2, (31) be-

es

_ 2t = 2001+ B) + 207(1 + B)? — 4oB(1 + B) + 4P°
i ot — 403 + 80 — 8 + 4

Iz

(34)

Imposing the stability restriction on the square of the modulus
of r requires

@ — 2B +3)+20(f+2)—2+ 1) <0 (35)

stability limits developed for the long-period waves satisfy
inequality for a short-period wave. The |r,|* is presented
a function of Courant number in Figure 7 for values of y
al to /2 and 7, the shortest wavelength resolvable on the
nerical grid. Short-period wave damping increases with
rant number and with decreasing wavelength and is a
h stronger function of Courant number than that for long-
iod waves. Wave propagation with a Courant number of
and 0 of 0.9 is undamped for both short- and long-period
ves.

- The dispersive properties of the numerical scheme can also
investigated by using the von Neumann analysis. For small
angles the measure of an angle in radians is approximately
ual to the sine of the angle. The phase angle of the numeri-
solution at time At is then

_ Imag ()

o, = (36)
N [l

‘the diffusion wave model the ratio of the numerical to

€2))

ot + 4a(1 — a)(1 — cos y) 4+ 4(1 — a)*(1 — cos y)*

continuum phase angle is formed with (24) and (36), yielding

i 1
(D,=Sm yI:

1/2
37
y 1+2A+A2+C,Zsin2y] 37

where
. C,(B% + 2BC, — 1)1 — cos 7)
B (1-B)?

Again, propagation in the numerical model matches that in
the continuum solution of the advective diffusion equation if

1.0

0.8

06

Ir

0.4

0.2

0

Fig. 7. Square of the modulus of the amplification factor for 4Ax
and 2Ax wavelengths as a function of Courant number and various
values of 6.
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Half sine waves of wavelength 8 and 16Ax that serve as
initial conditions for the linear case studies.
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Fig. 8.

this ratio is 1 for a given wavelength. Equation (37) is plotted
in Figures 2-4 for wavelengths of 24Ax, 12Ax, and 6Ax, re-
spectively. Though the values of @, are not generally equal to
those obtained via the modified equation analysis, all trends
are in agreement. Unlike the modified equation approach,
however, no restriction upon y was used in the development of
the equation for ®,. Therefore, for the shorter wavelengths
(Figure 4) the von Neumann analysis is likely to give a better
estimate of the phase behavior of the model. Numerical dis-
persion is typically the largest for short-period waves or short-
period Fourier components of a wave. Equation (37) reveals
that the shortest wave resolvable on the numerical grid is
stationary.

Linear Case Studies

A set of linear case studies is presented to demonstrate the
utility of the modified equation and von Neumann analyses in
representing model behavior and to assess the adequacy of the
modified-equation-based expression for numerical diffusion.
Figure 8 presents half sine waves, of wavelengths 8Ax and
16Ax, which will serve as initial conditions for these studies. If
the wave celerity is held constant, independent of the flow, and
a constant diffusion coefficient is assumed, the solution of the
initial value problem posed by the linear advective diffusion
equation and these initial conditions can be written as a Fou-
rier series. Fourier series solutions for 10 km downstream ad-
vection of the center of a wave with an assumed celerity of 0.9
m/s and a diffusion coefficient calculated from (19) are ob-
tained and compared with a corresponding numerical solu-
tion.

Initially, we will address the adequacy of the expression
given by the modified equation analysis for the numerical dif-
fusion inherent in the model. Cases presented in Figure 9 were
projected in the analyses to have minimal dispersion and a
range of diffusion. The damping evidenced in the numerical
and analytical solutions agree in all cases. Numerical diffusion
is also well represented by (19) for the cases presented in Fig-
ures 10 and 11.

We now consider cases that demonstrate the projected dif-
fusive and dispersive behavior of the model. The cases with 0
equal to 0.9 and C, of 1.0 (Figure 9) exhibited essentially pure
advection. No damping or phase error of any Fourier compo-
nent of the solution was projected for this case by the von
Neumann analysis. A small amount of dispersion, evidenced
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by a slight lag in the numerical solution, was present in
cases with 6 of 0.0 and C, of 0.1 (Figure 9). This slight lagging
phase error was projected by both the von Neumann 2
modified equation analyses (Figures 2 and 3). The Hirt a
sis incorrectly projected a leading phase error for these sa
cases (Figure 5). Figure 10 contains numerical and analyti
solution comparisons for cases with a constant Cour:
number and selected values of 6. The leading phase error of
the longer-wavelength components and the more extr
leading phase error of the short-wavelength components
evident for the case in which 6 is 0.5, as projected in Figur
and 4. Minimal damping of the short-wavelength compone
(Figure 7) is a necessary condition for development of lead
short-period waves. A small amount of phase lag occurred as
projected for the case with 0 equal to 0.0. Larger damping a
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Fig. 9. Comparison of numerical (lines) and Fourier s
(points) solutions for the 8 and 16Ax wavelengths after the center ¢
the wave has advected 10 km downstream. Cases shown were pro
ed to have minimal dispersion and a range of diffusion by the modi
fied equation and von Neumann analyses.



reater phase lag accompanied a reduction of 6 to —1.0. The
lir analysis projections of leading phase errors for all 0
alues when the Courant number is small and for the more
treme leading phase errors with negative 0 are, again, incor-
For the cases presented in Figure 11, 6 is held constant as
ant number is varied. As projected by the modified equa-
and von Neumann analyses, leading phase errors of the
-wavelength components occurred for Courant number
lagging phase errors occurred for Courant number 4.0;
a minimal phase error was observed for Courant number

erical Mesh Selection

ssment of the adequacy of a numerical mesh is an im-
nt problem-dependent part of model development. As
ed by further studies of the laboratory, rapidly varying
tests reported by Ferrick [1980], diffusion wave model
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ig. 10. Comparison of numerical (line) and Fourier series
ts) solutions for the 8Ax initial wavelength and a fixed value of
= (.1 after the center of the wave has advected 10 km downstream.
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Fig. 11. Comparison of numerical (line) and Fourier series
(points) solutions for the 16Ax wavelength and a fixed value of
§ = 0.5 after the center of the wave has advected 10 km downstream.

mass balance, and wave propagation speed errors are reduced
with improved numerical grid refinement. In practice, how-
ever, cost considerations and data availability frequently pre-
clude the use of highly refined meshes. Though numerical ex-
perimentation with mesh refinement is the final test of a grid,
the linear model analysis provides guidance.

A basic requirement of a numerical mesh for tailwater flow
studies is that it adequately resolve the wavelengths of interest
in the prototype. The linear analysis has shown that numerical
diffusion and model phase errors increase as the mesh is made
progressively coarser. Phase errors are evident in the lightly
damped 0 = 0.5, C, = 0.1 case with 9-mesh-point resolution
(Figure 10) and to a lesser extent in the same case with 17-
point resolution (Figure 11). These same mesh resolutions ex-
hibit little phase error in cases with increased diffusion (Fig-

ures 10-11).
The 9- and 17-mesh point wave resolutions retained the
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correct wave peak in the linear case studies. An important
question to resolve is whether a coarser mesh would affect
model diffusion. To investigate this effect, the half sine wave
was resolved on a coarse grid with only five mesh points, and
cases identical to those presented in Figure 10 were repeated.
Greater damping in the coarse mesh simulation (Figure 12)
results from the increased spatial mesh dimension Ax, for
given values of 6 and the Courant number. Large diffusion
cases are well behaved; the wavelength of the flow quickly
increases, and numerical and analytical solutions correspond
as before. The peak flow in the lightly damped 6 = 0.5, C, =
0.1 case, however, no longer corresponds to the analytical
solution, and the amplitudes of the leading waves have in-
creased. The wave period in this case is short relative to the
numerical grid, and a more accurate estimate of numerical
diffusion is required. By retaining more terms of the modified

120 T T T T -

105 — -

120 T T T T

105 -

75 ~

Flow (m¥s)

45 | | 1 ] —
120 T I T I

105 I~ =
90 + -
75 -

1 | | Il

455 2 8 2 6 20
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Fig. 12. Comparison of numerical (line) and Fourier series
(points) solutions for the coarse grid 4Ax initial wavelength and a
fixed value of C, = 0.1 after the center of the wave has advected 10
km downstream.
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Fig. 13. Apalachia Dam flow releases, March 22-23, 1979.

equation, a higher-order estimate of diffusion could be
However, a refined mesh corrects the wave peak error
yields decreased amplitudes of the leading waves.

Wave celerities and corresponding Courant numbers
with location and time in diffusion wave model applications.
The time step in the model, imposed by constraining the m
mum Courant number, varies with flow conditions in
study reach. The linear analysis has shown that numei
diffusion of all wavelengths increases with Courant numb
(Figure 1, 6, 7), and this effect was demonstrated in Figure
Significant lagging phase errors occur for shorter wavelen
at Courant numbers greater than 1.0 (Figure 3, 4). We
demonstrate the application of these concepts for selection
the maximum Courant number constraint in the “Field A|
cations” section below.

Physical/Numerical Diffusion and Dispersion

The water surface slope is largely responsible for diffusio
flow waves and the existence of a looped rating curve in ri
Cunge [19697] proposed the concept of balancing physical and
numerical diffusion to enhance the capabilities of the M
ingum flow routing model, and Koussis [1976] also follo
this approach. In these models, wave diffusion does
depend upon the water surface slope. ;

In the modified equation analysis the order of accuracy o
difference scheme is defined as the power of the computati
mesh dimension in the coefficient of the lowest-order €
term. If D of (19) is physically based, the numerical scheme
accurate to second order. Physically based values of D and |
yield a third-order numerical solution. Equating the diff
coefficients of (4) and (19) transforms an error term in
numerical solution of the continuity equation into a mea
ful part of the model and specifies the parameter 0 as

0=1+ &
T TIn[A+A-C)1+Ai+C)]
LD 2
~= BS(&>Ax (1 =F3)

where discharge and wave celerity are averaged over a nl
merical grid cell. For flow at relatively low Froude number
common in rivers, (38) reduces to the equation given
Koussis [1980], and at small Froude and Courant num
(38) is equivalent to the expression developed by Cunge [196¢
for the weighting factor in the Muskingum model i\

@
0=3 (1 BSO<E>Ax>



The parameter 0 provides variable diffusion in the model
n it is continually updated at each point in the numerical
sh. We have demonstrated that model diffusion also de-
p ds upon the Courant number. Larger Courant numbers
erate increased damping, but (38) compensates by increas-
0 to maintain the balance between physical and numerical
diffusion. If the Courant number is increased further, 6 calcu-
' lated from (38) may exceed the upper bound for model stabili-
ty, and small values of diffusion cannot be attained in the
model. If the diffusion balance is not enforced, the accuracy of
the model is degraded.
Strupczewski and Kundzewicz [1980] and Dooge et al.
[1982] found, in analyses of the Muskingum model, that nega-
tive values of the weighting parameter are due to short model
reach lengths. The same conclusion can be drawn from the
value of 0 expressed in (38) and (39). If negative values occur, 0
an no longer be considered a weighting parameter. Instead, it
s a parameter used to control the diffusion of the numerical
del.

~ In the interest of further enhancing the physical basis of the
us1on wave model, equating the coefficients of the physical
d numerical dispersion terms of (4) and (19), respectively,
uld provide improved model phase accuracy. However, the
model does not contain another free variable with which to
orce balanced dispersion. The physical dispersion coef-
ent of (4) is small and always positive. The dispersion coef-
ficient in the model is approximately zero for 6 of about 0.25
d C, < 0.5. Larger values of 0 correspond to a positive nu-
ical dispersion coefficient, and conversely, smaller 0 values
icate a negative coefficient. Model phase errors become
apparent when the absolute value of the numerical dispersion
coefficient is inappropriately large (19).
: Chang et al. [1983] studied the diffusion wave model ap-
plied to flood waves in rivers. They reported an unphysical
mputed discharge that decreased below an initial steady
te prior to the passage of a wave for positive  and recom-
nded increasing model time step as a corrective measure.
ghtly damped waves are characterized by positive 6 and
all Courant number or At (Figure 1). We have experienced
del tendencies for lightly damped, rapidly varying flow of
decreasing discharge immediately prior to an increasing flow
ith the subsequent generation of small-amplitude, short-
period leading wave trains and of increasing discharge prior to

The development of leading phase errors of short-period
ve components was projected in the model analysis (Figure
4) and demonstrated in the linear case studies for lightly
lamped waves (Figure 10, 11). The recommendation of Chang
et al. [1983] reduces leading phase error (Figure 4) and in-
- creases numerical diffusion (Figure 1) that acts to damp re-
maining short-period waves (Figure 7). However, excessive nu-
merical diffusion disrupts the diffusion balance of the solution,
and large Courant numbers give unacceptable mass balance
errors for rapidly varying flow. Our approach to control of
leading model phase error is to suppress the initial formation
of leading waves by retaining the previous computed dis-
charge. Numerical experiments have verified that this mecha-
‘nism does not adversely affect the solution.
~ An adequate description of sharp-fronted waves of relatively
short period that are encountered in tailwaters may dictate
e resolution of the computational mesh. Negative values of
f, which may then be required for balanced diffusion, will
roduce lagging phase error in the simulation that will be
ticeable for the shorter wavelengths. Minimization of the
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dispersion imbalance is possible for many cases with judicious
selection of the numerical mesh and is not generally a serious
limitation. Still, the insights obtained from the analysis remain
valuable as phase error can be anticipated, improving the in-
terpretation of model output.

FIELD APPLICATIONS

Two extensive field tests were conducted to confirm the
analytical findings concerning important physical processes in
rapidly varying tailwater flow and to demonstrate the practi-
cal utility of the linear model analysis and thereby establish
the applicability of the diffusion wave model. The tests were
conducted in 21-km study reaches of the Hiwassee River im-
mediately below Apalachia Dam and of the Clinch River im-
mediately below Norris Dam, where the features of the tailwa-
ter hydrograph are sharpest and the effect of flow wave diffu-
sion is most pronounced. The physical characteristics of these
river reaches span those of a large number of streams. The
Hiwassee River bed has a steep slope, dropping over 107 m,
and by contrast the Clinch River has a relatively mild bed
slope, dropping only 7.6 m. Both reaches have typical alter-
nating pool-riffle structures; however, a much greater percent-
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Fig. 14. Measured and computed stage at several locations on the
Apalachia tailwater. A maximum Courant number of 1.0, spatial grid
resolution of 1600 m, and variable 0 limited to positive values were
conditions of the numerical simulation.
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age of the Norris tailwater is pooled at low flow. The Hi-
wassee River bed is extremely rough, with large boulders and
trees in the channel, creating roughness elements that are typi-
cally on the order of the flow depth. In general, roughness
elements in the Clinch River reach are much smaller than
those of the Hiwassee River reach. Even during lengthy zero-
flow release periods from Norris Dam, the roughness elements
in the pools remain submerged.

Apalachia Dam T ailwater

Apalachia Dam is situated at Hiwassee River mile (HRM)
66, near the southern end of the Tennessee/North Carolina
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Fig. 15. Computed discharge at several locations on the Apala-
chia tailwater. A maximum Courant number of 1.0, spatial grid reso-
lution of 1600 m, and variable 0 limited to positive values were con-
ditions of the numerical simulation.
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border. At the dam the river has a drainage area of 2636 km®,
The bulk of the flow in this reach is normally diverted from
the dam through a conduit to the Apalachia powerhouse, | i
cated near the end of the reach. Therefore, flow occurs only
during floods and as a result of local inflows from a drainage
area totaling 306 km?. '
A field investigation of flow in the Apalachia Dam tailwater
was conducted by the Tennessee Valley Authority (TVA) on
March 22-23, 1979. The hydrograph during this study w
produced with sluice gates at the dam and is given in Figu
13. River stage was recorded at HRM 62.8, 59.0, 56.9, and 530
during the test. The channel shape was approximated in the
model as rectangular throughout the tailwater, and loc:
inflow was initially neglected. Channel width and slope
obtained from USGS quadrangles. The tailwater channel
width varied between 46 and 134 m, averaging 85 m, and tl
channel bed slope varied between 0.0027 and 0.0084. M
ning’s roughness coefficients, estimated on the basis of
observations and adjusted during model calibration, ran;
between 0.04 and 0.07, averaging 0.066.
In addition to physical parameters characterizing the r
model application requires the selection of a numerical g i
The linear analysis and past experience provided guidance in
selecting a spatial grid size of 1600 m and a maximum Co
ant number of 1.0 for application of the model to the A
chia tailwater. Lagging phase errors associated with negati
values of 0 were not encountered with these mesh parametel
but relatively light wave damping necessitated the suppres
of leading phase errors.
An initial comparison of measured and computed stage
presented in Figure 14. The propagation of the 28-m?/s release
in the model lags the data by a time that increases with
tance downstream. The timing and magnitude of the oth
releases are accurately represented in the model. Due to &
absence of the powerhouse discharge, the measured and
puted stages are not in agreement at HRM 53. Sensi
studies were conducted in which estimated input parameters
width, and roughness were varied in an effort to improve the
agreement between the modeled and measured propagation o
the 28-m?/s wave. Increased channel roughness caused a re-
duction in wave speed, an increase in steady-state stage
given flow, and an extended duration of the increased s
Increased channel width caused a decrease in the magn
of stage changes, a slowing of wave movement, and a de
creased period of increased flow. The overall agreement ol
model and prototype, however, was not improved. i
A physically justifiable development that greatly impro;
the propagation speed of the 28-m3/s wave without sig
cantly affecting the larger waves (Figure 15) was the inclus
of local inflows. Local inflows, measured at 0.35 m®/s km
the 5.6-km reach nearest the dam, were assumed to be repre-
sentative for the tailwater, and the known discharge at
powerhouse was included as a local inflow. Figure 14 presen
a revised comparison between the model and prototype stag
Sensitivity studies indicated that remaining discrepancies
the arrival times of the 28-m>/s wave can be attributed to
lack of detailed inflow data. E
At HRM 63 the only discrepancy between computed and
observed stages concerns the magnitude of the stage incre
during passage of the 28-m’/s wave. The effective channel
width at low flow is less than at higher flow, but due to
rectangular channel assumption, measured stage at low flow is
higher than the computed stage. At HRM 59 the model ac
rately describes the prototype stages, except at times :
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y local inflows are present. The river is pooled at low flow
HRM 57, and as a result the computed river stage at this
location falls below the measured stage at low flow. At HRM
, model and prototype stage data agree closely for all the
es. The model accurately conserved mass and repro-
ced the timing, amplitude, and shape of flow waves
oughout the study reach, reflecting favorably upon the nu-
ical mesh parameters used. The physical justification for
ission of backwater effects in the model cannot yet be
ged. It is possible that the pooled reaches in the Apalachia
ater were short enough to have a negligible effect upon
flow or that the addition of local inflow compensated for
e effect.

orris Dam Tailwater

Norris Dam is situated at Clinch River mile (CRM) 79.7,
Oak Ridge, Tennessee. The drainage area of the river at
dam is 7542 km2. An individual pool located near the
t of the study reach is over 4.0 km in length and has a
slope of only 0.00012. As the diffusion of a flow wave in a
rectangular channel is inversely proportional to the bed
ope (5), we expected much greater diffusion of the flow waves
the Norris tailwater relative to that in the Apalachia tailwa-

A 160-hour controlled release test (Figure 16) was per-
formed in the Norris Dam tailwater by the TVA on July 1-7,

980, during which the variation of river stage was continu-
“ously recorded at CRM 78.85, 76.1, 73.6, 71.4, and 67.3. The
ng pool in the study reach was isolated by the placement of
recording gages at CRM 76.1 and 73.6. The channel shape
as assumed in the model to be rectangular throughout the
y reach. Prior to the test, the TVA surveyed the tailwater

80 100 120 140 160

Time (hrs)

Fig. 16. Norris Dam flow releases, July 1-7, 1980.

for channel width and bed slope. Measured widths ranged
between 79 and 165 m, averaging 116 m, and bed slopes
varied between 0.00012 and 0.00130. Local inflows were small
during the test, averaging about 0.035 m3/s km, with point
inflows of 0.54 m3/s from Coal Creek, the largest tributary,
and 1.13 m>/s leakage past Norris Dam. Calibrated roughness
coefficients used in the model simulations ranged between
0.015 and 0.035, averaging 0.026.

The Norris tailwater model required a relatively fine spatial
resolution of 800 m to provide stage and discharge infor-
mation adequate to accurately resolve short-period releases.
The linear analysis revealed that the dissipative and dispersive
characteristics of the model are sensitive to the Courant
number and the 6 parameter, in addition to the spatial grid
resolution. The limitation imposed upon the maximum value
of the Courant number and the effect of specifying a minimum
value of the parameter 0 were addressed systematically in a
series of preliminary simulations to achieve optimal model
accuracy and to evaluate the model behavior predictions of
the linear analysis for nonlinear cases.

Figure 17 presents computed flow at CRM 67.2 with a con-
stant 0 value of 0.5 and maximum Courant numbers of 0.25
and 1.0, respectively. The simulation at the higher Courant
number exhibited greater model damping and lagging of
waves relative to the lower Courant number simulation; this
was especially pronounced for short period waves. Model
damping in the small Courant number simulation was mini-
mal. Based upon the linear model analysis, all of these ten-
dencies were expected. Both simulations created mass, and at
CRM 67.2 the smaller Courant number case had a mass con-
servation error of 28%.

A comparison of the simulations with a constant ¢ value of

Discharge (m%¥s)

T =

T T I i T I

CRM672 _|

80
Time (hrs)

Fig. 17. Hydrographs at downstream extent of Norris tailwater study reach computed with constant 0 = 0.5, spatial grid
resolution of 800 m, and maximum Courant numbers of 0.25 and 1.0.



286 FERRICK ET AL.: TAILWATER FLOW

280 T T T T T T T
240
200
160

120

Discharge (m¥s)

80

40

T T T T T T T P s i

CRME72 |

Time (hrs)

Fig. 18. Hydrographs at downstream extent of Norris tailwater study reach computed with constant 6 = 0.0, spatial grid
resolution of 800 m, and maximum Courant numbers of 0.25 and 1.0.

0.0, given in Figure 18, shows that wave propagation was
slightly faster and wave attenuation was greater for the simu-
lation with a maximum Courant number of 0.25 than for the
Courant number 1.0 simulation. The apparent contradiction
with the linear theory concerning wave attenuation is actually
an effect of improved mass conservation, which results from a
quicker arrival of the tail of the wave. The bulk of the differ-
ence between the two simulations occurred in the long, nearly
flat, pooled reach. Again, both simulations created mass, but
the error was only 4% for the smaller Courant number case.
Measured and computed stages with a constant 6 value of 0.0
and a maximum Courant number of 0.25 agree reasonably
well at all gages, although modeled damping is generally less
than that in the prototype. Insufficient numerical diffusion is
an indication that negative 0 values are needed to maintain
the physical-numerical diffusion balance, and satisfactory
model accuracy suggests that a variable weighting factor is
not essential for modeling flat, ponded river reaches.

Further reduction of the Courant number did not affect the
computed hydrograph at the downstream end of the study

80 100 120 140 160

reach for any of the constant 0 runs. Larger Courant ni
(>2.0) simulations were attempted, but the model d
converge to a solution at the initial abrupt flow increase
inflow hydrograph. This convergence problem was n
solved because of generally poor model accuracy at
Courant numbers for rapidly varying flow. f

Comparing the simulations of like Courant number in|
ures 17 and 18 reveals model tendencies caused by varyi
6 parameter that were predicted in the linear analysi:
effect upon model damping of varying 0 is greater th
effect of varying the Courant number. For the cases in
is set at 0.0 the slopes of wave fronts are less steep,
sponding to increased diffusion relative to the cases where
0.5. Also, the arrivals of the short wavelengths at CR)
are lagged in the 0 equal 0.0 cases, relative to the 0 eq
cases.

The linear analysis indicated that negative values of
quired to maintain the diffusion balance when fine nun
grids are used, introduce a lagging phase error in the m
results. Computed hydrographs for simulations having
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Fig. 19. Hydrographs at downstream extent of long pool and downstream extent of Norris tailwater study reach
computed with maximum Courant number of 0.25, spatial grid resolution of 800 m, and variable 0 either limited to
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jon of 0.0 and no limitation upon 0, are presented in
re 19 for CRM 73.7 and 67.2. Only minimal differences
the simulations existed upstream of the 4.0-km
d reach where bed slope is relatively large and the 0,
ation is imposed infrequently. Downstream of the pool at
737, the flow and stage differences between the simula-
s were pronounced and continued to increase to the
stream extent of the study reach. Figure 19 reveals that
timing of wave arrival was not greatly affected by the 6.,
ation, but wave damping and mass balance were ex-
emely sensitive to the limitation. Much greater wave diffu-
on occurred as expected in the simulation without a mini-
um 0 limitation. Limiting 6 to positive values did not pro-
attenuation of the modeled stage peaks that was ade-
to reproduce the prototype stage measurements. Limi-
0 to positive values resulted in an increase in mass of 14%
the downstream end of the study reach. Relaxing the 0
tion to be greater than —1.0 reduced the increase of
ass to 8%, and removing the limitation altogether yielded a
% decrease of mass at the downstream end of the reach.

he preliminary Norris tailwater simulations support the
ty of model behavior predictions of the linear analysis
nonlinear cases. Optimal model accuracy is achieved with
imum Courant number of about 0.25 and without a
tion upon 0,,,. Measured and computed stages with
parameter specifications are compared in Figure 20 at
ve locations on the tailwater. The stage measurement lo-
ions do not coincide exactly with the modeled sections, and
interpretation of the offsets between measured and
mputed stage requires that these differences be considered.
verall agreement between the model and the data on wave
ming, amplitude, and shape is excellent.

the upstream-most gage (CRM 78.85) the model (CRM
reproduces all of the releases. An error in the chart speed
e stage recorder, beginning at hour 100, leads to an in-
ing timing discrepancy toward the end of the test. At the
of the long pool, CRM 76.1, wave timing and shape are
| represented in the model CRM 76.2, but peak stages of
smaller-amplitude waves are slightly less attenuated than
the prototype. In the long pool, almost all roughness ele-
ments were submerged at low flow, and small values of Man-
g’s roughness (0.015) were required to reproduce stage
anges in the reach. At the downstream end of the pool,
73.7, wave shapes, peaks, and timing are generally well
sented in the model. Because the value of 6 required for
uate diffusion in the model is small or negative, the
er waves with short wavelengths are lagged, as projected
n the linear analysis. Comparing the stage data at CRM 71.4
67.3 with the numerical simulation at CRM 71.2 and 67.2,
pectively, also reveals excellent agreement. Again, due to
ive 0 values in the model, small, short-period waves ar-
ing between hours 70 and 90 lag slightly in the simulation.

.l.‘

DiscussioN AND CONCLUSIONS

Our linear analysis of the dynamic equations of open
nnel flow produced an equation describing wave advec-
n, diffusion, and dispersion in rivers. In dimensionless form
s equation provides insight regarding the importance of the
us physical processes affecting the flow. The adequacy of
hnematlc wave equation and the potential for shock for-
on in the channel are evaluated from the relative mag-
e of the dimensionless diffusion coefficient. The analysis
icates that diffusion of short-period waves in rivers is an
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important process and that wave celerity in natural rivers at
small Froude numbers is dominated by friction and essentially
independent of inertia.

We describe rapidly varying flow in tailwater streams with
an inertia-free diffusion wave model. The model allows vari-
able wave diffusion and does not require a downstream
boundary condition. The modified-equation, Hirt, and von
Neumann analyses of the model were conducted to improve
accuracy and our interpretation of results. Identical stability
conditions, developed with each approach, revealed that nu-
merical stability does not impose a limitation upon the model
time step or the minimum value of 6.

The Apalachia and Norris tailwater studies demonstrated
that model behavior predictions of the linear analysis are valid
for nonlinear cases. The dissipative and dispersive character-
istics of the model are sensitive to the selection of spatial grid
resolution, the Courant number, and 6. Guided by the analy-
sis, spatial mesh resolution and maximum Courant number
for optimal model accuracy can be estimated a priori, and the
only calibration required for model application is the adjust-
ment of Manning’s roughness. The analysis showed that
model damping increases as 0 decreases, as the Courant
number increases, and as wavelength relative to the spatial
grid length Ax decreases. The model analysis also revealed
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Fig. 20. Measured and computed stage at several locations on the
Norris tailwater. A maximum Courant number of 0.25, spatial grid
resolution of 800 m, and variable 6 without a lower bound were
conditions of the numerical simulation.
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that damping and phase errors occur when the spatial grid is
overly coarse in relation to wavelengths of interest. An accu-
rate expression quantifying the numerical diffusion of the
model was an important result of the modified equation
analysis. The von Neumann and modified equation analyses
of model phase error concurred and were supported over wide
ranges of 6 and the Courant number by linear routing studies;
however, the frequently utilized Hirt analysis yielded incorrect
phase relationships.

The capabilities and accuracy of the diffusion wave model
are enhanced by allowing 0 to vary so that a balance is main-
tained between physical and numerical diffusion. The limi-
tation specified in many diffusion wave models—that the
weighting parameter applied to the time derivative, in our case
0, be greater than 0.0—should not be generally applied.
Mildly sloping rivers modeled with a fine spatial mesh for
adequate wave resolution require negative values of this pa-
rameter for proper wave diffusion.

A physical/numerical dispersion balance eliminating model
phase error cannot be maintained simultaneously with the
diffusion balance. Leading phase errors, occurring as a result
of light damping in the Apalachia tailwater model, were sup-
pressed without adversely affecting the simulation. The phase
lag introduced in the Norris tailwater simulation as a result of
negative values of 6 was minimal, noticeable only for small,
short-period waves. For many cases, phase error can be mini-
mized by judicious selection of the numerical mesh.

The release hydrographs and measured stage data from the
Apalachia and Norris Dam tailwaters provided a discrimi-
nating test of model performance for wide ranges of bed
channel slope and roughness. The ability of the diffusion wave
model to simulate flow waves with wide ranging amplitudes,
durations, shapes, and base flows in both tailwaters demon-
strates its generality and confirms analytical findings con-
cerning important rapidly varying flow processes in natural
rivers.

The dissipation of energy by numerous large-scale rough-
ness elements in the Apalachia tailwater channel was ad-
equately described by Manning’s equation. The effect of diffu-
sion of the waves during passage through the steeply sloping
study reach was small, and the computed rating curves at the
four stage measurement locations were not strongly looped.
These observations indicate that the water surface slope term
retained in the momentum balance may not be important. The
water surface slope increases the energy slope at the wave
front, causing an increase in the celerity of the front. Though
the shape of the computed hydrograph was not significantly
altered, discounting the water surface slope caused a lag in the
arrival of the rising limb of each hydrograph and degraded the
wave timing agreement between the model and the data. Cor-
rect propagation of the small flow release in the Apalachia
model required the inclusion of local inflows and could not be
achieved through model calibration.

The presence of lengthy backwater reaches in the flatly slop-
ing Norris tailwater did not significantly affect the unsteady
flow waves, allowing a simple characterization of pooled
reaches by a small bottom slope and roughness. The Norris
tailwater study demonstrated that wave diffusion in mildly
sloping rivers is significant, resulting in a dramatic reduction
of short-period wave amplitudes in a short distance.

Dynamic waves of measurable size were not observed
moving ahead of the main flow or propagating upstream as a
result of wave reflection in either field study. Together with

these observations the reproduction of all features of the
sured stage-time traces by the model demonstrates that
idly varying flow in shallow rivers is not affected significz
by inertia. The dominance of friction over inertia for lar
wave propagation in deeper rivers was indicated by Sto @
[1957] in his study of rapidly rising floods on the Ohio Rive
He reported that the first measurable disturbance traveled fa
behind the initial dynamic wave at the wave speed used i
kinematic routing methods. As the importance of inertia |
greatest for rapidly varying flow in a mildly sloped stream, ¥
conclude that inertia is unimportant in natural, free-flowin
rivers. i

These results have clear implications for understanding tk
physical processes controlling downstream wave propag i0
following the breach of a dam. Frictional dissipation of arg
amplitude flow waves is dominant over inertia and contre
wave celerity. Because of the typical short-period nat |
dam-break waves, diffusion affects wave amplitude s
cantly and acts to resist the formation of a shock front. Thef
fore, reliable prediction of wave amplitude and timing oy
distances greater than a few wavelengths depends upon ac
rate descriptions of these processes.

NOTATION

damping exponent, modified equation analysis.
cross-sectional area of the channel.

phase exponent, modified equation analysis.
channel width.

wave celerity.

average wave celerity in a reach.

Chezy conveyance coefficient.

constant, Manning’s equation.

Courant number.

diffusion coefficient.

dimensionless diffusion coefficient.
dispersion coefficient.

dispersion coefficient, Hirt analysis.
dimensionless dispersion coefficient.
Froude number.

acceleration due to gravity.

J—L

spatial index.

wave number.

time index.

Manning’s roughness coefficient.

the order of.

discharge per unit width.

local inflow per unit length of channel.
discharge.

amplitude of the discharge component of wave
number k.

discharge at previous time step.
dimensionless discharge.

derivative of discharge with respect to time.
channel hydraulic radius.
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r, complex amplification factor of the kth Fourier
component.
S, slope of the energy grade line.
S, slope of the channel bottom.
t time.
t* dimensionless time.
vV  velocity.
x distance.
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dimensionless distance.

flow depth.

flow depth at previous time step.

finite distance and time increments.

grouping of parameters, diffusion wave model.
grouping of parameters, diffusion wave model.
kAx.

balanced diffusion parameter.

coefficients of terms in the modified equation.
phase angle of continuum solution.

phase angle of numerical solution.

D, ratio of numerical and continuum phase angles.
Y average over time At.
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