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Fig. 1  Failure of Teton Dam, on the Teton river, in eastern Idaho, on June 5, 1976,
possibly a rare instance of a mixed kinematic-dynamic wave.
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ABSTRACT.    We  answer  the  question  as  to  whether  the  mixed  kinematic-dynamic  wave  is
generally too strongly diffusive to be considered a practical flood wave. We show that in the great
majority of cases, these mixed waves are not there for us to calculate them! Their typical midsize
obliges them to attenuate very quickly, with their mass joining the underlying kinematic or diffusion
wave, which continues to grow in both size and permanence as it propagates downstream. Since a
diffusion  wave  will  calculate  diffusion,  including  the  case  of  zero  diffusion,  it  is  clear  that  the
solution of a diffusion wave encompasses that of a kinematic wave. Therefore, the diffusion wave is
postulated as the flood wave par excellence,  i.e.,  the wave type generally indicated for use in
practical flood routing applications.

1.  INTRODUCTION
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When modeling flood waves, often the first question that comes to mind is: What type of wave should
I use? Kinematic and diffusion waves are well established. Moreover, it is recognized that the dynamic
waves  of  Lagrange  do  not  lend  themselves  to  flood  routing  applications.  The  question  remains:
How good are the mixed kinematic-dynamic waves notably elaborated by Fread? Note that we are here
referring to the solution of the complete St. Venant equations of unsteady open-channel flow in one
spatial dimension.

Over the past 50 years, the approach that seems to have prevailed in some quarters is the following:
"Forget about the various types of waves; let's use the complete solution of the St. Venant equations in
all  applications,  and  let  the  computer  do  the  number  crunching!"  We  note  here  that  theory  and
experience have confirmed that  this  approach is  generally  ill-fated.  Hydrodynamic  theory  indicates
otherwise;  moreover,  practical  applications confirm the shortsightedness of  placing all  eggs in  one
basket. In this article, we strive to debunk the notion that the mixed kinematic-dynamic wave should be
the only way to model flood wave propagation.

We aim to show that the sole use of the mixed wave approach is at best futile, and at worst, wrong; and
very likely to lead to wasted time and resources. For added clarity, in the following section we list the
various types of waves in current use, while elaborating on their nature and properties.

2.  TYPES OF WAVES

In  one-dimensional  unsteady  free-surface  flow,  the  following  four  wave  types  are  in  general  use:
(1) kinematic waves; (2) diffusion waves; (3) mixed waves; and (4) dynamic waves. Kinematic waves
exclude the inertia and pressure-gradient terms; diffusion waves exclude only the inertia terms; mixed
kinematic-diffusion waves (the complete solution) exclude no terms, and dynamic waves exclude the
friction and gravity terms (Table 1). The excluded terms are removed from consideration because they
are too small to materially affect the properties of the wave in question.

Table 1.  Types of waves in one-dimensional unsteady free-surface flow.

No. Wave type

Terms of the equation of motion participating in the wave description

Common
nameLocal

inertia
Convective

inertia
Pressure
gradient Friction Gravity

1 Kinematic without diffusion       ✓ ✓ Kinematic

2 Kinematic with diffusion     ✓ ✓ ✓ Diffusion

3 Mixed kinematic-dynamic ✓ ✓ ✓ ✓ ✓ Mixed

4 Dynamic ✓ ✓ ✓     Dynamic

3.  WAVE PROPERTIES
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The properties  of  these wave types have been examined in  detail  by  Ponce and Simons (1977)
(Fig. 2). These authors used linear stability theory to determine celerity and attenuation functions for:
(1) kinematic, (2) diffusion, (3) mixed kinematic-dynamic, and (4) dynamic. The unifying element is seen
to be the dimensionless wavenumber σ*,  defined by multiplying the applicable wavenumber (2π  /L)

times the reference channel length Lo, i.e., the length of channel that it would take the equilibrium flow
to drop a head equal to its depth.

Kinematic waves are those of Seddon (1900),  while dynamic waves are those of Lagrange (1788).
Mixed kinematic-dynamic waves are those lying along the middle-to-right of the wavenumber spectrum
(Fig. 2). These waves, hereafter referred to as mixed waves, were featured in the numerical models
developed beginning in the 1970s to solve the complete St. Venant equations; see, for instance, Fread
(1985). These models have been widely referred to as "dynamic wave" models, although the misnomer
has led to some confusion with the long-established Lagrange (1788) waves.

Diffusion waves lie to the right of kinematic waves and to the left of mixed kinematic-dynamic waves in
the wavenumber  spectrum (Fig.  2).  Unlike  kinematic  waves,  which feature  zero  diffusion,  diffusion
waves have a small but perceptible amount of diffusion. However, this diffusion is small compared to
that of the mixed waves (Fig. 3). We note that the inclusion of the pressure-gradient term (Table 1) is
directly responsible for the diffusion.

Ponce and Simons (1977)

Fig. 2   Dimensionless relative wave celerity cr*
 vs dimensionless wavenumber σ*.
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Ponce and Simons (1977)

Fig. 3   Logarithmic decrement -δ  vs dimensionless wavenumber σ*.

Figure 2 shows that Seddon's kinematic waves, lying toward the left of the dimensionless wavenumber
spectrum,  feature  a  constant  wave  celerity  and  are,  therefore,  nondiffusive.  Following  the  same
rationale, Lagrange's dynamic waves, lying toward the right, are also nondiffusive. However, the mixed
waves, lying toward the middle-to-right and featuring sharply varying celerity, are shown to be strongly
diffusive.  The  amount  of  diffusion,  characterized  by  the  logarithmic  decrement  δ,  varies  with  the
prevailing Froude number (Fig. 3) (Wylie, 1966) (see also Box A). Greater diffusion corresponds to the
lower Froude numbers, provided the latter remains below the threshold value F  = 2,  applicable  for
Chezy friction in hydraulically wide channels (Figs. 2 and 3).

4.  KINEMATIC WAVES

A kinematic wave may be indeed regarded as the quintessential flood wave. Theory tells us that a
kinematic wave does not attenuate. Practical experience would indicate that if a wave attenuates very
quickly, it is most likely not a flood wave. Mathematically, we reckon that the constancy of the wave
celerity, across a specified range of small dimensionless wavenumbers (0.001 ≤ σ* ≤ 0.01), is a sure

indication of the presence of a kinematic wave (Ponce and Simons, 1977). Kinematic waves diffuse
either imperceptibly or not at all. However, they may suffer change of shape due to nonlinearities, the
latter  being  a  process  by  which  different  discharges  travel  with  different  celerities  (Ponce  and
Windingland, 1985).

At this juncture, we endeavor to quote Lighthill and Whitham (1955), who established the foundation
of kinematic wave theory. They keenly observed: "In some applications, including the case of flood
waves, kinematic waves and dynamic waves are both possible together. However, the dynamic waves
have a much higher wave velocity and also a rapid attenuation. Hence, although any disturbance sends
some signal downstream at the ordinary wave velocity for long gravity waves [sic], this signal is too
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weak to be noticed at any considerable distance downstream, and the main signal arrives in the form of
a kinematic wave at a much slower velocity."

5.  DIFFUSION WAVES

Unlike kinematic waves, diffusion waves are subject to a small amount of diffusion. They lie inmediately
to the right of kinematic waves in the dimensionless wavenumber spectrum, properly within the range
0.01 ≤ σ* ≤ 0.17 (Fig. 2) (Ponce, 2024). The value σ* = 0.01 depicts 2.1% wave diffusion, admittedly a

relatively small amount, while the value σ* = 0.17 depicts 30% wave diffusion. The latter is regarded as

a threshold between diffusion and mixed waves (Natural Environment Research Council, 1975).

Typical flood waves diffuse somewhat; therefore, diffusion waves are indeed a practical model of flood
wave propagation. They complement kinematic waves rather nicely, while finding their best application
in  cases  where  wave  diffusion  is  appreciable  and  its  calculation  is  deemed  necessary.  There  is,
however, a catch. While not originally intended, conventional kinematic wave models may actually show
some wave diffusion. This diffusion is artificial, and in no way related to the diffusion that would accrue
if the wave were to be an actual diffusion wave. Therefore, the procedure is hit and miss as far as the
true wave diffusion is concerned. The artificial diffusion in question, indeed "numerical diffusion", arises
from the discrete nature of the grid and the associated lack of numerical convergence.

The matter of how to best handle the numerical diffusion has been resolved by Cunge (1969),  who
proposed a match of  the numerical  diffusion of  the scheme itself  with the physical  diffusion of  the
related kinematic wave equation with diffusion, i.e., the diffusion wave equation. This development led
to the Muskingum-Cunge method of  flood routing,  a physically-based alternative to the well-known
Muskingum method (Ponce, 2014a).

6.  DYNAMIC WAVES

Classical dynamic waves are those of Lagrange (1788). More recently, Fread (1985) and others have
referred to the mixed kinematic-dynamic waves as "dynamic" waves, while herein we refer to them
simply as "mixed" waves. The semantic confusion is judged to be unfortunate. In an attempt to fix the
problem, in this article we use the adjective "dynamic" to refer solely to the Lagrange waves.

Dynamic waves feature a constant wave celerity for dimensionless wavenumber σ*  ≥  100, for most

Froude numbers, and σ*  ≥  1000 for all  Froude numbers (Fig.  2).  This means conclusively,  as with

kinematic waves, that the dynamic waves of Lagrange are not subject to diffusion.

The dynamic waves of Lagrange are not the typical flood waves. Their size is too small to constitute a
veritable flood risk. Their appplication is restricted to short wave propagation in irrigation and power
canals, where the scale of the disturbance is such that it may be actually seen, or perceived, with the
naked  eye.  Unlike  flood  waves,  which  are  mass  waves  that  feature  only  one  wave  traveling
downstream,  classical  dynamic  waves  are  energy  waves,  which  feature  two  waves,  traveling  in
opposite directions under subcritical flow, and in only one direction (downstream) in supercritical flow.

For enhanced clarity, a parenthetical comment regarding the cause of wave diffusion is advisable here.
Diffusion is produced by the interaction of  the pressure gradient with the friction and gravity terms
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(Table 1, Row 2). More precisely defined, diffusion is produced by the interaction of the non-kinematic
(read "dynamic") terms (inertia and/or the pressure gradient),  with the kinematic  terms (friction and
gravity) (Table 1, Row 3) (Ponce, 1982). The amount of wave diffusion is proportional to the interaction
between kinematic and dynamic terms of the equation of motion. Lack of kinematic terms results in zero
diffusion, depicted by the curve to the far right of Fig. 2; conversely, lack of dynamic terms also results
in zero diffusion, depicted by the curve to the far left of Fig. 2.

7.  MIXED WAVES

At this juncture, it remains for us to discuss the only other wave type left: The mixed kinematic-dynamic
wave,  for  short,  the  "mixed"  wave  of  unsteady  open-channel  flow.  Since,  by  definition,  this  wave
features both kinematic and dynamic components in comparable amounts, it follows that it must be
strongly diffusive.

The  answer  to  this  question  is  Yes!  The  mixed  kinematic-dynamic  wave  is  indeed
very strongly diffusive. In fact, it is the most diffusive of all the wave types considered in this article!
Given this fact, the question that remains is if the mixed wave may be construed as a flood wave, or
not.  To  answer  this  question  precisely,  we  resort  once  again  to  the  illuminating  work  of
Ponce and Simons (1977) and to their analytical calculation of celerity and attenuation functions for all
types of shallow-water waves. The amounts of wave attenuation calculated by Ponce and Simons (see
detail in Box A) are depicted in Fig. 3 and complemented with Table 2.

Box A. The logarithmic decrement δ.

The logarithmic decrement δ is defined as the amount of wave attenuation (the reduction in
wave amplitude A) experienced by a sinusoidal perturbation in the time elapsed from t = 0 to

t = 1 period, i.e., within one period of propagation. In other words: A1 = A0 eδ. It is a convenient,

albeit  expedient,  way  to  analyze  and  compare  wave  attenuation  amounts.  To  explain  it
mathematically,  we  endeavor  to  quote  here  directly  from  the  original  source
(Ponce and Simons, 1977, Page 1464):

▪ The wave attenuation follows an exponential law in which the amplitude at a
given time t is equal to the initial amplitude at time to multiplied by (e β*I t* ),
in which t* = (t - to) uo / Lo.

▪ When comparing wave amplitudes after one propagation period, t* = T uo/Lo,
or likewise, t* = 2 π / |β*R|.  Thus, [added here for clarity] the logarithmic
decrement δ is defined as δ = β* T u o / Lo, or  δ = 2 π β*I / |β*R|.

▪ The value of δ is a measure of the rate at which the unsteady component of
the motion changes upon propagation. For δ positive, amplification (i.e., a
logarithmic increment) sets in; for δ negative, the motion attenuates and dies
away (i.e., a logarithmic decrement).
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Within the σ* range shown in Fig. 3, for subcritical flows (F < 1), where the attenuation is shown to be

stronger (greater values of δ), the logarithmic decrement is seen to vary from a low of δ  = 0.0021
for σ* = 0.001 (Table 2, Line 1), to a peak of δ = 180 for σ* = 90 (Table 2, Line 6).

Table 2, Line 0 (emphasized with yellow background) shows a very small amount of wave attenuation,
0.02%,  or  0.0002,  associated  with  a  very  low  value  of  logarithmic  decrement  δ  =  0.00021
corresponding to σ* = 0.0001, which ostensibly lies outside of the range shown in Fig. 3.

Table 2, Line 3a (with yellow background) purposely depicts a wave attenuation of 0.3 (Col. 4), that is, a
30%  decay  of  the  wave  amplitude,  a  threshold  value  widely  considered  as  the  division  between
diffusion waves (less than or equal to 30% attenuation) and mixed waves (more than 30% attenuation)
(Natural Environment Research Council, 1975). This threshold corresponds to a value of σ* = 0.17.

Table 2, Line 4a (with yellow background) purposely depicts a wave attenuation of 0.99 (Col. 4), that is,
a 99% decay of the wave amplitude, an attenuation value which nearly erases the wave altogether!
This attenuation amount corresponds to a value of σ* = 2.

Table 2, Line 5a (with yellow background) purposely depicts a wave attenuation of 1.0 (Col. 4), that is, a
100% decay of  the  wave amplitude,  an  attenuation  value which  erases the  wave altogether!  This
attenuation amount corresponds to a value of σ* = 90.

Table 2, Col. 5 shows the indicated wave types, from kinematic, with very small attenuation (0.0002), to
diffusion, with small to medium attenuation (0.0021 to 0.1894), to mixed wave, with large to very large
attenuation  (0.3  to  0.9999).  Table  2,  Lines  5  and  6  depict  a  nonexisting  wave;  the  wave  having
disappeared completely, with its mass going on to form part of the underlying, or equilibrium, flow.

Table 2.  Amounts of wave attenuation across the dimensionless wavenumber spectrum (σ* ≤ 90).

[1] [2] [3] [4] [5] [6]

No.
Dimensionless
wavenumber σ*

Logarithmic
decrement δ eδ

Wave attenuation
A = (1 - eδ) Wave type

0 0.0001 0.00021 0.9998 0.0002 Kinematic

1 0.001 0.0021 0.9979 0.0021 Kinematic to diffusion

2 0.01 0.021 0.9792 0.0208 Diffusion

3 0.1 0.21 0.8106 0.1894 Diffusion

3a 0.17 0.357 0.7 0.3 Diffusion to mixed

4 1. 2.1 0.1224 0.8776 Mixed

4a 2. 4.6 0.01 0.99 Mixed

5 10. 21. 0. 1.0 No wave
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5a 90. 180. 0. 1.0 No wave

Given that wave attenuation is A = (1 - eδ) (Table 2, Col. 5), the results of Table 2 lead to the following
waves and corresponding ranges:

▪ Kinematic waves:  σ* ≤ 0.001;  A ≤ 0.0021
▪ Diffusion waves:  0.001 < σ* ≤ 0.17;  0.0021 ≤ A ≤ 0.3
▪ Mixed waves:  0.17 < σ* ≤ 2;  0.3 ≤ A ≤ 0.99
▪ No wave:  σ* > 2;  A = 1.

We conclude that most, if not all, mixed waves would have effectively lost all their strength in most
cases of practical interest. They lose their strength rapidly due to their highly diffusive nature, the latter
due to the competition between kinematic and dynamic terms (read forces) that are comparable in size.
It follows that mixed waves lack a basic property of a flood wave, namely, its permanency,  which is
characterized by its mild or very mild amount of attenuation (diffusion). Thus, we argue that, in general,
mixed waves may not be construed as flood waves.

8.  DAM-BREACH FLOOD WAVES

Every  rule  is  likely  to  call  for  an  exception.  In  the  previous  section  (Section  7),  we presented an
elaborate mathematical rationale for why the mixed wave is not likely to apply for the case of a general
flood, i.e., one that is subject to very little or no attenuation. Yet we reckon that there is one particular
flood wave that actually may diffuse appreciably. This is the case of a dam-breach flood wave.

Typically, the flood wave produced by the breaching of an earthen embankment is sudden, lasting about
3 hr, a sure candidate for strong wave diffusion. A case in point: Of 24 dam failures in the United States
documented by Taher-Shamsi et al. (2003), 17 of them failed in 3 hr or less.

Such flood waves (Fig. 4) are apt to fall under the category of mixed wave or, at the very least, be a
strongly diffusive diffusion wave, with attenuation A ≅ 0.3 (see Table 2, Line 3a). Fortunately for all of
us, instances of dam breaches are rare and far between.
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Fig. 4  Failure of Teton Dam, on the Teton river, in eastern Idaho, on June 5, 1976,
possibly a rare instance of a mixed kinematic-dynamic wave.

9.  MODELING FLOOD WAVES

This section elaborates on ways to model flood waves. It seeks to answer the question: Now that I
chose a type of wave, how should I proceed? What actual tool should I use in a real practical situation?
This  section  is  divided  into  three  parts:  (1)  kinematic  waves,  (2)  diffusion  waves,  and  (3)  mixed
kinematic-dynamic waves. The classical dynamic waves of Lagrange described in Section 6 lie outside
of the scope of this section.

Kinematic waves

Kinematic  wave  modeling  may  be  performed  in  two  ways.  The  first  way  is  to  realize  that  a  true
kinematic wave does not attenuate; therefore, subsidence, or diffusion, is out of the question. Still, the
wave is actually moving downstream with a certain celerity, and that speed is subject to calculation.
Indeed, that speed is Seddon's celerity, which states that the velocity of a flood wave at a given cross-
section is equal to the slope of the rating curve (dQ/dy) divided by the stream or channel top width (T)
(Ponce, 2014b: Eq. 10-60). Yet an alternate way of expressing Seddon's celerity is: c = βu, in which

u  =  mean  flow  velocity,  and  β  is  the  exponent  of  the  discharge-flow  area  rating  (Q  =  αAβ)
(Ponce, 2014b: Eqs. 10-52 and 10-58).

The simplicity of Seddon's celerity is remarkable, providing a ready tool to assess flood movement with
a minimum of computational effort. Box B describes an example of the application of the concept.

Box B. Length of the flood wave in the Upper Paraguay river at Porto Murtinho, Matto Grosso, Brazil.

The calculation presented here allows a bit of reflection on the possible maximum size of a flood wave.
The calculation is not intended to be accurate; it is given here only for general reference on the nature
of flood waves in large tropical rivers.

The objective is to calculate the length of the flood wave on the Upper Paraguay river at Porto Murtinho,
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Mato Grosso de Sul, Brazil. This unique site features the longest possible flood wave period, estimated
at one (1) year. The valley is that of the Pantanal of Mato Grosso (Great Swampland of Mato Grosso),
which is wholly contained within Central Western Brazil and neighboring Eastern Bolivia. The distance
along the river is 1,266 km, measured from the upstream location at Caceres, Mato Grosso, to the
downstream location at Porto Murtinho, Mato Grosso de Sul (Ponce, 1995).

▪ Flood wave period: T = 365 d × (86,400 s/d) = 31,536,000 s

▪ Average stream velocity, based on field experience: u = 0.1 m/s

▪ Exponent β of the discharge-flow area rating (estimated) (Q = αAβ): β = 5/3

▪ Flood wave celerity: c = β u = (5/3) × 0.1 = 0.167 m/s

▪ Flood wavelength: L = cT = 0.167 m/s × (31,536,000 s) = 5,266,512 m

▪ Flood wavelength at Porto Murtinho: L = 5,266 km.

Fig. 5  Upper Paraguay river at Porto Murtinho, Mato Grosso do Sul, Brazil,
featuring a flood hydrograph typically lasting one year.

The second way to perform kinematic wave modeling is to use a numerical model, many of which exist
in  various  forms,  in  the  literature  and  elsewhere.  These  models,  however,  suffer  from  a  decided
conundrum: How to properly model a kinematic wave without introducing a certain amount of numerical
diffusion associated itself with the finite grid size . [Note that a kinematic wave proper is not supposed to
have any  diffusion! See Section 4].  The diffusion in question is uncontrolled;  its  existence may be
confirmed by running the model for two different grid resolutions. This exercise will invariable result in
two different answers, begging the question of which is the correct one (Ponce, 1986).

There does not appear to be a way out of this difficulty. At this juncture, the best that can be stated is
that, for a sufficiently fine grid resolution, the numerical diffusion should reduce itself to where it may not
be of much concern in a given practical application.

Diffusion waves

Unlike  kinematic  waves,  which  are  governed  by  a  first-order  differential  equation,  describing  only
convection,  diffusion  waves  are  governed  by  a  second-order  equation,  describing  convection  and
diffusion.  Hayami  (1951)  pioneered  the  development  of  diffusion  wave  theory  by  combining  the
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equations of water continuity and motion, excluding the inertia terms (Table 1, Line 2), into a second-
order convection-diffusion equation. This methodology has been widely referred to in the literature as
Hayami's diffusion analogy (Ponce, 2014a). In flood wave modeling, the numerical solution of Hayami's
second-order convection-diffusion equation provides a solution of a diffusion wave.

Cunge (1969) developed a convenient and practical alternative to Hayami's approach by solving the
first-order kinematic wave equation numerically, while at the same time relating the amount of numerical
diffusion produced by the finite grid size, to the actual physical diffusion of the second-order convection-
diffusion  equation  of  Hayami.  Cunge  observed  that  his  flood  routing  methodology  resembled  the
classical Muskingum method of McCarthy (1938), as cited by Chow (1959). More importantly, however,
Cunge was able to tie in the numerical diffusion of the scheme itself to the physical diffusion of the flood
wave in  question,  thus,  rendering  the  procedure  essentially  grid-independent.  The latter  has  been
widely referred to as Muskingum-Cunge method (Natural Environment Research Council, 1975; Ponce
and Yevjevich, 1978).

The avowed feature of grid independence does wonders to set apart the Muskingum-Cunge method
from  existing  kinematic  wave  numerical  solutions,  which  ostensibly  suffer  from  grid  dependence.
Since the solution of  the diffusion wave equation contains,  i.e.,  it  encompasses the solution of  the
kinematic  wave  equation,  the  Cunge  procedure  may  actually  replace  both  Hayami's  second-order
solution and the conventional grid-dependent kinematic wave's first-order numerical solution. Thus, the
Muskingum-Cunge  method  may  be  regarded  as  the  method  of  choice  to  model  flood  waves
numerically, with a reasonable expectation of accuracy, since the solution is, for all practical purposes,
almost of second order (Cunge, 1969; Ponce and Yevjevich, 1978).

Mixed kinematic-dynamic waves

Mixed waves comprise all terms in the governing equations of water continuity and motion, that is, the
St. Venant equations (Table, 1, Line 3). The inclusion of the inertia terms is indeed forceful, but is not
without its pitfalls. The resulting wave is dynamic, characteristically of second order, therefore featuring
two component waves, which travel in different directions, one upstream and the other downstream in
subcritical  flow, and in the same direction (downstream) in supercritical  flow. The existence  of  two
solutions throws a  monkey wrench in  the avowed purpose of  flood routing,  which ostensibly  is  to
calculate the propagation of the primary wave, i.e., specifically the one that travels downstream.

Another significant pitfall is that the numerical solution of the complete St. Venant equations represents
an  order-of-magnitude  increase  in  complexity  in  the  formulation  and  actual  performance  of  the
numerical analog chosen to model the full equations. A scheme that appears to be widely favored by
practitioners is the Preissmann box scheme (Ponce et al., 1978). Theoretically, this scheme should
provide second-order accuracy, if only its elements (namely, the temporal and spatial derivatives) are
perfectly centered within the box, with a weighting factor θ = 0.5. In practice, however, center-weighing
the  Preissmann  scheme  does  not  work,  because  it  leads  to  strong  numerical  instabilities,  which
eventually render it inoperable. An expedient way out of this predicament has been to use θ  > 0.5,
typically in the range 0.55-0.60, to stabilize the scheme by providing a certain amount of numerical
diffusion  to  control  the  computation.  Greater  values  of  θ,  in  the  range  0.6-1.0,  provide  increasing
amounts of numerical diffusion, but this is always at the expense of increased nonconvergence (Fig. 6).
Thus,  the  methodology  is  seen  to  degrade  to  first-order,  compromising  the  original  advantage
predicated on the use of a complete "dynamic wave" model (i.e., our mixed wave model).
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Fig. 6  Numerical instability generated by the use of the Preissmann scheme with a sinusoidal flood wave,
with the weighting factor varying in the range 0.49-1.0. [Hydrograph input is partially shown in black color, while
output at the leading edge of the hydrograph is shown in colors varying with θ]. Note that while oscillations at

the base decrease with an increase in θ, thus enhancing stability, this increase leads to a faster output
hydrograph peak (the trend shown only in the output hydrograph rise), showing increasing nonconvergence.

Yet another significant pitfall of the numerical solution of the St. Venant equations is that the model does
require a downstream boundary condition to proceed. This fact was identified early by Abbott (1976):
Extract,  Page  276  as  a  decided  limitation,  although  later  proponents  of  the  methodology  have
apparently failed to pay due attention to this shortcoming. By nature, the method generates looped
rating curves at internal computational points, forcing the need to also specify a looped rating at the
downstream  boundary.  Clearly,  the  latter  requirement  is  tantamount  to  "knowing  the  solution
beforehand."  An  expedient  way  out  of  this  difficulty  has  been  to  specify  a  single  rating  at  the
downstream boundary and to hope for the best! However, this procedure, while convenient because it
helps solve the riddle,  constitutes one more proof  of  why the methodology does not  live up to its
expectations. The feeling of "Is the wave dynamic or not?" remains to haunt those that continue to show
confidence in the procedure.

We point out that the comments of this subsection purposely exclude U.S. government software such
as  the  U.S.  Army  Corps  of  Engineers  River  Analysis  System,  widely  known  as  HEC-RAS
(Wikipedia:  HEC-RAS). This  comprehensive  hydraulic  software  features,  as  one  of  its  several
components, a numerical model of the St. Venant equations using an implicit finite difference scheme.
Tools  such  as  HEC-RAS  remain  popular  in  practice  because  they  are  supported  by  the  federal
government, with other considerations being secondary in nature.

To sum up, by now it must be widely apparent that the mixed kinematic-dynamic wave is not what its
users had originally in mind. The mixed wave is shown to be fraught with difficulties, the least of them
being the realization of whether the said wave is there or not for us to calculate it! More commonly, the

Mixed kinematic-dynamic waves debunked, Victor M. Ponce https://ton.sdsu.edu/mixed_kinematic_dynamic_waves_debunked.html

12 of 15 23/05/24, 8:50 PM

https://ton.sdsu.edu/abbott_pathology3.png
https://ton.sdsu.edu/abbott_pathology3.png
https://ton.sdsu.edu/abbott_pathology3.png
https://ton.sdsu.edu/abbott_pathology3.png
https://ton.sdsu.edu/abbott_pathology3.png
https://ton.sdsu.edu/abbott_pathology3.png
https://en.wikipedia.org/wiki/HEC-RAS
https://en.wikipedia.org/wiki/HEC-RAS
https://en.wikipedia.org/wiki/HEC-RAS


modeler will face other problems, of both a numerical and physical nature, which will have the net effect
of casting doubts on the accuracy and practicality of the overall procedure.

10.  ANALYSIS AND CONCLUSIONS

We have analyzed the celerity and attenuation properties of four types of shallow-water waves currently
in  use  in  hydraulic  engineering:  (1)  kinematic,  (2)  diffusion,  (3)  mixed  kinematic-dynamic,  and
(4)  dynamic.  Kinematic  waves  are  massive  (read,  "large")  and  nondiffusive;  diffusion  waves  are
massive and diffusive. Mixed kinematic-diffusion waves, herein referred to simply as mixed waves, are
relatively midsize (see Figs. 2 and 3) and may be shown to be strongly diffusive, while the dynamic
waves of Lagrange are small and nondiffusive. The first two wave types, kinematic and diffusion, due to
their large size and avowed permanence, may be construed as typical flood waves. The fourth type, the
dynamic wave of Lagrange, is too small to be considered a flood wave.

We have sought to answer the question of whether the mixed wave is generally too strongly diffusive to
be considered a practical flood wave. The answer is Yes! In the great majority of cases, the mixed
waves may not be there for us to calculate them! Their typical midsize obliges them to attenuate very
quickly, with their mass eventually joining the underlying kinematic or diffusion wave, which continues to
grow in both size and permanence as it propagates downstream.

Note  that  only  in  the  extremely  unusual  case  of  a  dam-breach  flood  wave  could  we  be  actually
confronted with the case of a mixed flood wave. A dam-breach flood wave is characteristically sudden,
poised by Nature to be a mixed wave, an unusual type of flood wave [The experience of the Teton dam
failure (Fig. 4) is a case in point]. Professionals in charge of forecasting or hindcasting a dam-breach
flood wave would be keen to  keep this  in  mind.  For  all  other  flood wave routing applications,  the
kinematic and diffusion waves should do the job in an accurate and forthright manner.

Notably, since a diffusion wave will actually calculate diffusion, including the case of zero diffusion, it
follows that the solution of a diffusion wave encompasses the solution of a kinematic wave. Therefore,
the diffusion wave is postulated as the flood wave par excellence,  i.e.,  the type of  wave generally
indicated for use in practical applications of flood routing, analysis, and design.

11.  CLOSING REMARKS

In general,  mixed kinematic-dynamic waves,  herein simply referred to as mixed waves,  and  which
elsewhere have been widely referred to, albeit inaccurately, as "dynamic waves," are in fact not large
enough nor permanent enough to veritably constitute flood waves. An accumulated body of theory and
experience confirms this fact. On the other hand, kinematic waves and their close cousins, diffusion
waves,  typically  feature  large mass and are  characteristically  nondiffusive,  i.e.,  either  they are  not
attenuating or, else, attenuating only a very small amount; therefore, they are apt to be ideal models of
flood waves. Since a numerical solution of a diffusion wave generally comprises that of a kinematic
wave, the diffusion wave may be regarded as the most appropriate way to model flood waves.
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