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ABSTRACT.    Four dimensionless numbers in open-channel  flow are presented,  explained and
compared. Two of them are ratios of velocities, and the other two are ratios of diffusivities. All four
numbers are defined in terms of veritable physical quantities, either velocities or diffusivities. Taken
together,  these  numbers  complete  the  description  of  the  state  of  flow,  for  either  steady  flow
(the first two numbers), or unsteady flow (the last two).

1.  INTRODUCTION

There  are  two  characteristic  properties  in  open-channel  flow:  (1)  velocity;  and  (2)  diffusivity.
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The velocity of a fluid parcel is the rate of change of its position in space, in a particular direction, with
time. The units of velocity are L/T, in which L = length, and T = time. The expression u = 1 m/sec
(one meter per second) describes the mathematical certainty that a chosen fluid parcel is moving along
an established flow direction, or path, with a velocity u equal to 1 meter per second. In fluid mechanics,
velocity relates to the process of convection of a fluid parcel; in hydrology, it relates to concentration, a
concept related to time of concentration. In hydraulic and hydrologic modeling, velocity is described by
a differential equation of first order.

Surface flow diffusivity ν is the first moment of the flow velocity. The units of diffusivity are (L/T)L, or its

equivalent  L2/T.  The  expression  ν  =  1  m2/sec,  in  relation  to  a  given  disturbance,  describes  the
mathematical certainty that the disturbance is spreading at the rate controlled by the coefficient of
diffusivity ν. In fluid mechanics, diffusivity relates to the process of diffusion; in hydrology, it relates to
flood wave attenuation, or dissipation. In hydraulic and hydrologic modeling, diffusivity is described by
a differential equation of second order (Table 1).

Table 1.  Velocities and diffusivities in open-channel flow.

Property Symbol Units Process Order

Velocity u L/T Convection First

Diffusivity ν L2/T Diffusion Second

These  two  fluid  properties,  velocity  and  diffusivity,  characterize  the  flow  up  to  second  order.
Several  types  of  velocities  and  diffusivities  may  be  construed,  with  their  ratios  constituting  the
dimensionless parameters referred to as "numbers." The latter encapsulate the properties of fluid flow,
enhancing their understanding under both steady and unsteady conditions. This fact is reflected in the
title of the present article: The states of flow, referring to the various states under which the flow may
be described using these numbers. The remainder of this article endeavors to explains the numbers,
clarifying their definition and scope.

2.  VELOCITIES IN OPEN-CHANNEL FLOW

There are three characteristic velocities in open-channel flow: (1) the mean velocity of steady flow u;
(2)  the  relative  celerity  of  kinematic  waves  v;  and  (3)  the  relative  celerity  of  dynamic  waves  w.
Celerity  is  the  velocity  of  a  wave  (unsteady  flow),  as  opposed  to  the  velocity  of  steady  flow
(Ponce, 1991).

The celerity of a kinematic wave is: ck = β u, in which β = exponent of the rating, Q = αAβ, in which
Q = discharge, A = flow area, and α = coefficient of the rating. Therefore, the relative celerity of a
kinematic wave is:   v  = ck  -  u,    i.e.,  the velocity of the kinematic wave relative to that of the flow
(Ponce, 2014a).

The  celerity  of  a  dynamic  wave,  which  has  two  components,  is:  cd  =  u  ±  (gD)1/2,  in  which
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g = gravitational acceleration, D = hydraulic depth, with D = A /T, and T = channel (stream) top width.
Therefore, the relative celerity of a dynamic wave is:  w = cd - u = ± (gD)1/2,  i.e., the velocity of a
dynamic wave relative to that of the flow (Ponce, 2014b).

The three velocities identified here encompass both steady (u) and unsteady flow (v and w), as well as
short  waves  (dynamic,  w),  and  long  waves  (kinematic,  v).  We  note  that  these  are  the  only  flow
velocities that are identifiable in the present context.

3.  DIFFUSIVITIES IN OPEN-CHANNEL FLOW

Three diffusivities are recognized in open-channel flow: (1) molecular diffusivity; (2) hydraulic diffusivity;
and (3) spectral diffusivity. In fluid mechanics, the molecular diffusivity νm is commonly referred to as
kinematic  viscosity ν,  a  measure  of  the  fluid's  internal  resistance  to  flow  at  the  molecular  level.
In open-channel flow, the hydraulic diffusivity is expressed in terms of the bottom slope and bottom
friction. In unsteady open-channel flow, the spectral diffusivity is defined in terms of the wavelength of
the sinusoidal perturbation to the steady flow. These propositions are explained in Box A.

Box A.  Diffusivities in open-channel flow.

1. Newton's law of viscosity is: τ /ρ = ν (∂u/∂s), in which τ = shear stress, ρ = mass density of
the fluid, ν = kinematic viscosity of the fluid, and (∂u/∂s) = velocity gradient in the direction s
perpendicular to the direction of τ.

2. τ /ρ = νm (∂u/∂s), in which νm = molecular diffusivity.

3. The molecular diffusivity νm may be expressed as νm = u (Lm /2), in which Lm = (2νm /u)  is

a characteristic molecular length (Chow, 1959).

4. The hydraulic  diffusivity νh  is  defined as  νh  =  u  (Lo  /2),  in  which  Lo  =  (do  /So)  is  a

characteristic hydraulic (reach) length, defined as the distance along the channel wherein the
flow drops an elevation equal to its equilibrium depth (Hayami, 1951; Ponce and Simons,
1977).

5. The spectral diffusivity νs is defined as νs = u (L /2), in which L = characteristic wavelength

of the sinusoidal surface perturbation (Ponce, 1979).

6. Note that all three diffusivities: (1) molecular, (2) hydraulic, and (3) spectral, are defined in
terms of their respective characteristic lengths: (1) molecular length, (2) hydraulic (reach)
length, and (3) spectral wavelength of the sinusoidal perturbation. Furthermore, note that the
three diffusivities share a similar structure: A product of the convective velocity times one-half
of a respective characteristic length.

4.  STEADY FLOW VELOCITY RATIO:  THE FROUDE NUMBER
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The Froude number is the ratio of mean flow velocity u to relative celerity of dynamic waves w: F = u /w
(Ponce, 2014b). It  compares the mean flow velocity to the relative celerity of small (short) surface
perturbations; accordingly, it classifies the flow into three types: (1) subcritical, for F < 1; (2) critical,
for F = 1; and supercritical, for F > 1.

In open-channel hydraulics, the Froude number is useful in determining the direction of computation in
the analysis of water surface profiles: Upstream for subcritical flow, and downstream for supercritical
flow. In river mechanics, the Froude number is an indication of the limit between lower regime, F < 0.5,
generally where ripples and dunes predominate in the streambed, and upper regime, F > 0.5, where
plane bed and antidunes prevail (Simons and Richardson, 1966).

[Click on top of figure to expand]

Simons and Richardson (1966).

Fig. 1   Forms of bed roughness in alluvial channels: (a) lower regime (left), and (b) upper regime (right).

Note the sharp division between subcritical and supercritical flow at F  = 1. The latter constitutes a
singular point, at which the direction of computation switches instantaneously between upstream and
downstream. The existence of a singularity in the neighborhood of F = 1 may render the computation
unstable;  therefore,  caution is recommended in the vicinity of  critical  flow. A history of  the Froude
number, including Froude's significant contributions to hydraulic engineering, has been presented by
Ponce (2014b).

5.  STEADY FLOW DIFFUSIVITY RATIO:  THE REYNOLDS NUMBER

The Reynolds number is  a ratio of  viscosities,  or  diffusivities.  The conventional  Reynolds number,
defined for an arbitrary cross-sectional shape, in terms of hydraulic radius Ro, is: R = (uo Ro) / νm
(Ponce, 2014b). For a hydraulically wide channel: R = (uo do) / νm. For the purposes of this article, we
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define an alternative Reynolds number as an appropriate ratio of diffusivities, as follows: R' = νh/νm.
Therefore: R' = R / (2 So) (see Table 2).

The Reynolds number R  classifies the flow as being in one of  the following regimes:  (1)  laminar,
(2) transitional, or (3) turbulent. In open-channel flow, under steady flow conditions, laminar flow occurs
for  R  ≤  500;  turbulent  flow  for  R  >  2000;  and  transitional  flow  in  the  intermediate  range
(500  <  R  ≤  2000).  The  use  of  the  Reynolds  number  is  somewhat  limited  in  open-channel  flow
applications, since the flow usually remains within the turbulent regime.

6.  UNSTEADY FLOW VELOCITY RATIO:  THE VEDERNIKOV NUMBER

The Vedernikov number is the ratio of the relative celerity of a kinematic wave v to the relative celerity
of a dynamic wave w: V = v /w (Ponce, 2014b). It characterizes the following states of flow:

!"V < 1:  Stable flow, for v < w,

!"V = 1:  Neutrally stable flow, for v = w,

!"V > 1:  Unstable flow, for v > w.

Under stable flow, the relative kinematic wave celerity v  is smaller than the relative dynamic wave
celerity w and, therefore, surface waves (perturbations) are able to attenuate (dissipate).

Under neutrally stable flow, the relative kinematic wave celerity v is equal  to the relative dynamic
wave celerity w and, therefore, surface waves neither attenuate nor amplify.

Under unstable flow, the relative kinematic wave celerity v is greater than the relative dynamic wave
celerity w. Therefore, surface waves are subject to negative attenuation, i.e., amplification. In practice,
the condition V > 1 leads to the development of roll waves, recognized as a train of waves that travel
downstream, typically in artificial channels of steep slope (Fig. 2). The flow condition leading to the
formation of  roll  waves may be explained in terms of  the kinematic waves, which transport  mass,
overcoming the dynamic waves, which transport energy (Craya, 1952; Ponce and Choque Guzman,
2019).
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Fig. 2   A train of roll waves in a lateral canal, Cabana-Mañazo irrigation, Puno, Peru.

The theory of the Vedernikov number (Vedernikov, 1945; 1946), originally christened by Powell (1948)
and later presented by Chow (1959) in Chapter 8 of his textbook, was clarified by Ponce (1991), who
expressed  the  Vedernikov  number  in  terms  of  relative  kinematic  and  dynamic  wave  celerities.
The subject  of  hydrodynamic stability  for  the control  of  roll  waves in  channelized rivers has been
treated by Ponce and Choque Guzman (2019).

7.  UNSTEADY FLOW DIFFUSIVITY RATIO:  DIMENSIONLESS WAVENUMBER

The dimensionless wavenumber of Ponce and Simons (1977) is defined as follows: σ* = (2π /L)Lo.

It  may  also  be  readily  expressed  as  a  ratio  of  diffusivities:  σ*  =  (2π  /L)Lo  =  2π  (νh  /νs).

The dimensionless wavenumber σ* classifies the unsteady flow being considered into four spectral

ranges (Fig. 3):

1. Kinematic (extreme left),

2. Diffusion (left-of-center),

3. Mixed kinematic-dynamic (right-of-center), and

4. Dynamic (extreme right).

The precise domains of these spectral ranges have been determined by Ponce (2023):

!"Kinematic flow: σ* < 0.001.

!"Diffusion flow: 0.001 ≤ σ* < 0.17.

!"Mixed  kinematic-dynamic  flow:  0.17  ≤  σ*  <  1  to  100,  depending  on  the  Froude  number
(refer to Fig. 3).

!"Dynamic flow: σ* ≥ 10 to 1000, depending on the Froude number (refer to Fig. 3).
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Ponce and Simons (1977)

Fig. 3   Dimensionless relative wave celerity cr*
 vs dimensionless wavenumber σ*.

The findings of Ponce and Simons (1977) help to elucidate the behavior of all possible wave types in
unsteady open-channel flow. The latter include both "long" waves, ostensibly of a kinematic nature, on
the far left side of Fig. 3, and "short" waves, of a dynamic nature, on the far right. Also included are the
diffusion waves, of intermediate range and displaying properties that are shown to be quite practical,
and  the  mixed  kinematic-dynamic  waves,  for  short  mixed  waves,  in  the  middle-to-right  range.
These  mixed  waves  are,  for  the  most  part,  impractical  due  to  their  extremely  strong  dissipative
tendencies (Ponce, 2023).

8.  SUMMARY

Four dimensionless numbers in open-channel flow are presented, explained and compared (Table 2).
Two of them are ratios of velocities and the other two are ratios of diffusivities. All four numbers are
defined in terms of veritable physical quantities, be it either velocities or diffusivities. Taken together,
these  numbers  complete  the  description  of  the  state  of  flow,  for  either  steady  flow (the  first  two
numbers), or unsteady flow (the last two).

Table 2.  Dimensionless numbers in open-channel flow.

Dimensionless No. Symbol Ratio of Definition Ranges Alternate

Froude F Velocities u / w
(a) subcritical,

(b) critical,
(c) supercritical

None

Reynolds R' Diffusivities νh /νm
(a) laminar,

(b) transitional,
(c) turbulent

R

Vedernikov V Velocities v / w
(a) stable,
(b) neutral,
(c) unstable

None

Ponce-Simons σ* Diffusivities 2π (νh /νs)
(a) kinematic,

(b) mixed,
(c) dynamic

None
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