Documents in Portable Document Format (PDF) require Adobe Acrobat Reader 5.0 or higher to view; download Adobe Acrobat Reader.


online_wsprofiles_23:   M3 water-surface profile



INPUT DATA:

Select:       [Choose S.I. Units or U.S. Customary units

Enter discharge Q (m3/s) [cfs]:              Enter bottom width B (m) [ft]:             Enter side slope z (z H:1 V):    

Enter bottom slope So (m/m) [ft/ft]:             Enter Manning's n:    

Enter number of computational intervals n (suggested range 50-200) [If left blank, a default value of 100 will be used]:    

Enter number of tabular output intervals m (suggested range 10-50) [If left blank, a default value of 10 will be used]:    

Enter flow depth at the upstream boundary yd (m) [ft] [If entered, program will compare with normal depth; if left blank, program will use normal depth]:    

To calculate normal depth at the upstream boundary, the program requires the following hydraulic and geometric data for the upstream channel:
[Make sure bottom slope So,u/s >>  So. Leave any other box blank if the value is the same as the corresponding value entered above].

Enter u/s discharge Qu/s (m3/s) [cfs]:             Enter u/s bottom width Bu/s (m) [ft]:             Enter u/s side slope zu/s (z H:1 V):    

Enter Manning's nu/s:              Enter u/s bottom slope So,u/s (m/m) [ft/ft]: [do not leave blank]:    


ECHO OF INPUT:

Discharge Q =                Bottom width B =                Side slope z =  

Bottom slope So =                Manning's n =   

Number of computational intervals n =                Number of tabular output intervals m =   

Normal flow depth at the upstream boundary   yn =  0 [ yn was calculated by default ]

Discharge Qu/s =                Bottom width Bu/s =                Side slope zu/s =  

Bottom slope So,u/s =                Manning's nu/s =   


OUTPUT:

Computational depth interval Δy =   0                     Tabular output depth interval (Δy)t =   0

Normal depth [ downstream of the hydraulic jump ]  yn =   0

Normal-depth Froude number [ downstream of the hydraulic jump ]  Fn =   0

Froude number of upstream flow Fn,u/s =  0 

Critical depth [ upstream of the hydraulic jump ]  yc =  0 

Critical slope Sc =  0 

kDepth
()
Area
()
Velocity
()
Velocity head
(m)
Specific head
()
Wetted perimeter
()
Hydraulic radius
()
Friction slope
()
Average slope
()
Specific head difference
()
Length increment
()
Depth gradient ()Total length
()
00000000000000


            

  Your request was processed at  09:34:10 pm on September 14th, 2024   [ 240914  21:34:10 ].


Thank you for running online_wsprofiles_23.   Please call again.   [Version 1.0.1,   070505]

Count 

online calc
normal depth critical depth normal and critical depth discharge in channel critical slope
normal depth in culvert critical depth in culvert discharge in culvert discharge sluice discharge weir
M1 wsprofile M2 wsprofile M3 wsprofile S1 wsprofile S2 wsprofile S3 wsprofile
C1 wsprofile H2 wsprofile A2 wsprofile C3 wsprofile H3 wsprofile A3 wsprofile
sequent depth HJ energy loss HJ initial sequent HJ efficiency HJ critical width constriction
ogee spillway Hazen-Williams parallel pipes three reservoirs tractive force
V-notch weir V-notch partially contracted Cipolletti weir Rectangular weir Standard contracted rectangular weir Standard suppressed rectangular weir
Froude number Vedernikov number Limiting contracting ratio
Creager rational slope-area linear reservoir storage indication 1 storage indication 2
Muskingum Muskingum-Cunge time-area Clark UH Cascade of linear reservoirs
USGS Methods for magnitude of floods in California Kinematic wave applicability Diffusion wave applicability Clark's unit hydrography compared to Ponce's version Correlation coefficient of a joint probability distribution Storage volume of a detention basin
Blaney-Criddle Penman Penman-Monteith reference crop Thornthwaite Priestley-Taylor Penman-Monteith ecosystems
Gumbel Gumbel 2 Log Pearson Log Pearson 2 TR-55 graphical curve number
Overland flow using the diffusion wave method Dynamic hydraulic diffusivity convolution S-hydrograph time of concentration water balance
UH cascade dimensionless UH cascade general UH cascade series UH cascade all series UH cascade
one-predictor linear one-predictor nonlinear two-predictor linear two-predictor nonlinear hyperbolic regression
fall velocity Lane & Koelzer USLE USLE2 Dendy-Bolton Shields
Duboys Meyer-Peter Colby 1957 Colby reservoir design life Equilibrium channel top width using the Lane et al. theory
Modified Einstein Procedure bridge scour using Melville equation
DO sag DO sag analysis Oxygenation Salinity (EC to TDS)